def h2odemo(): """ Python API test: h2o.demo(funcname, interactive=True, echo=True, test=False)[source] Copied from pyunit_glm_demo.py """ try: h2o.demo(funcname="glm", interactive=False, echo=True, test=True) except Exception as e: assert False, "h2o.demo() command not is working."
def h2odemo(): """ Python API test: h2o.demo(funcname, interactive=True, echo=True, test=False)[source] Copied from pyunit_glm_demo.py """ ret = h2o.demo(funcname="glm", interactive=False, echo=True, test=True) assert ret is None
def demo_glm(): h2o.demo(func="glm", interactive=False, test=True)
def demo_deeplearning(): h2o.demo(func="deeplearning", interactive=False, test=True)
def demo_gbm(ip,port): h2o.demo(func="gbm", interactive=False, test=True)
def demo_gbm(): h2o.demo(funcname="gbm", interactive=False, test=True)
def demo_deeplearning(ip, port): # Connect to a pre-existing cluster h2o.init(ip, port) # Execute gbm demo h2o.demo(func="deeplearning", interactive=False, test=True)
def demo_deeplearning(ip, port): h2o.demo(func="deeplearning", interactive=False, test=True)
def demo_deeplearning(ip,port): # Connect to a pre-existing cluster h2o.init(ip,port) # Execute gbm demo h2o.demo(func="deeplearning", interactive=False, test=True)
cluster_estimator #h2o_df['CAPSULE'] = h2o_df['CAPSULE'].asfactor() #model = h2o.glm(y = "CAPSULE", # x = ["AGE", "RACE", "PSA", "GLEASON"], # training_frame = h2o_df, # family = "binomial") #h2o.download_pojo(model) #============================================================================== # binary logistic #============================================================================== help(h2o.glm) h2o.demo("glm") from h2o.estimators.glm import H2OGeneralizedLinearEstimator h2o_df['FilteredFilename'] = h2o_df['FilteredFilename'].asfactor() h2o_df.types h2o_df.columns train, test = h2o_df.split_frame(ratios=[0.70]) H2OGeneralizedLinearEstimator? logistic_glm = H2OGeneralizedLinearEstimator(family="binomial") logistic_glm.train(x=["size","numberofrecords"], y='FilteredFilename',
def experiment02(self): self.load_trainingset(False) h2o.init() h2o.demo("glm")
def demo_deeplearning(): h2o.demo(funcname="deeplearning", interactive=False, test=True)