Esempio n. 1
0
    def test_benchmark_import(self):
        covtype200xSize = 15033863400

        csvFilenameList = [
            ("covtype200x.data", "covtype200x.data", covtype200xSize, 700),
            ]

        trialMax = 1
        base_port = 54321
        tryHeap = 28
        # can fire a parse off and go wait on the jobs queue (inspect afterwards is enough?)
        DO_GLM = False
        noPoll = False
        benchmarkLogging = ['cpu', 'disk' 'network']
        pollTimeoutSecs = 120
        retryDelaySecs = 10
        for i,(csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
            localhost = h2o.decide_if_localhost()
            if (localhost):
                h2o.build_cloud(2,java_heap_GB=tryHeap, base_port=base_port,
                    enable_benchmark_log=True)
            else:
                h2o_hosts.build_cloud_with_hosts(1, java_heap_GB=tryHeap/2, base_port=base_port, 
                    enable_benchmark_log=True)

            for trial in range(trialMax):
                csvPathname = "/home/0xdiag/datasets/standard/" + csvFilepattern

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")

                start = time.time()
                parseKey = h2o_cmd.parseFile(csvPathname=csvPathname,
                    key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                if noPoll:
                    # does it take a little while to show up in Jobs, from where we issued the parse?
                    time.sleep(2)
                    # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                    h2o_jobs.pollWaitJobs(pattern=csvFilename,
                        timeoutSecs=timeoutSecs, benchmarkLogging=benchmarkLogging)
                    # for getting the MB/sec closer to 'right'
                    totalBytes += totalBytes2 + totalBytes3
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()


                if totalBytes is not None:
                    fileMBS = (totalBytes/1e6)/elapsed
                    l = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, fileMBS, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                print csvFilepattern, 'parse time:', parseKey['response']['time']
                print "Parse result['destination_key']:", parseKey['destination_key']

                # BUG here?
                if not noPoll:
                    # We should be able to see the parse result?
                    h2o_cmd.check_enums_from_inspect(parseKey)
                        
                # use exec to randomFilter out 200 rows for a quick RF. that should work for everyone?
                origKey = parseKey['destination_key']
                # execExpr = 'a = randomFilter('+origKey+',200,12345678)' 
                execExpr = 'a = slice('+origKey+',1,200)' 
                h2e.exec_expr(h2o.nodes[0], execExpr, "a", timeoutSecs=30)
                # runRFOnly takes the parseKey directly
                newParseKey = {'destination_key': 'a'}

                print "\n" + csvFilepattern

                #**********************************************************************************
                if DO_GLM:
                    # these are all the columns that are enums in the dataset...too many for GLM!
                    x = range(54) # don't include the output column
                    x = ",".join(map(str,x))

                    GLMkwargs = {'x': x, 'y': 54, 'case': 1, 'case_mode': '>',
                        'max_iter': 10, 'n_folds': 1, 'alpha': 0.2, 'lambda': 1e-5}
                    start = time.time()
                    glm = h2o_cmd.runGLMOnly(parseKey=parseKey, timeoutSecs=timeoutSecs, **GLMkwargs)
                    h2o_glm.simpleCheckGLM(self, glm, None, **GLMkwargs)
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()
                    l = '{:d} jvms, {:d}GB heap, {:s} {:s} GLM: {:6.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                #**********************************************************************************
                h2o_cmd.checkKeyDistribution()
                h2o.tear_down_cloud()

                sys.stdout.write('.')
                sys.stdout.flush() 
    def test_GLM_enums_score_superset(self):
        print "FIX!: this should cause an error. We should detect that it's not causing an error/warning?"
        SYNDATASETS_DIR = h2o.make_syn_dir()

        n = 200
        tryList = [
            (n, 1, 'cD', 300), 
            (n, 2, 'cE', 300), 
            (n, 3, 'cF', 300), 
            (n, 4, 'cG', 300), 
            (n, 5, 'cH', 300), 
            (n, 6, 'cI', 300), 
            ]

        for (rowCount, colCount, key2, timeoutSecs) in tryList:
            # using the comma is nice to ensure no craziness
            colSepHexString = '2c' # comma
            colSepChar = colSepHexString.decode('hex')
            colSepInt = int(colSepHexString, base=16)
            print "colSepChar:", colSepChar

            rowSepHexString = '0a' # newline
            rowSepChar = rowSepHexString.decode('hex')
            print "rowSepChar:", rowSepChar

            SEEDPERFILE = random.randint(0, sys.maxint)
            csvFilename = 'syn_enums_' + str(rowCount) + 'x' + str(colCount) + '.csv'
            csvPathname = SYNDATASETS_DIR + '/' + csvFilename
            csvScoreFilename = 'syn_enums_score_' + str(rowCount) + 'x' + str(colCount) + '.csv'
            csvScorePathname = SYNDATASETS_DIR + '/' + csvScoreFilename

            enumList = create_enum_list(listSize=10)
            # use half of the enums for creating the scoring dataset
            enumListForScore = random.sample(enumList,5)

            # add a extra enum for scoring that's not in the model enumList
            enumListForScore.append("xyzzy")

            print "Creating random", csvPathname, "for glm model building"
            write_syn_dataset(csvPathname, enumList, rowCount, colCount, SEEDPERFILE, 
                colSepChar=colSepChar, rowSepChar=rowSepChar)

            print "Creating random", csvScorePathname, "for glm scoring with prior model (using enum subset)"
            write_syn_dataset(csvScorePathname, enumListForScore, rowCount, colCount, SEEDPERFILE, 
                colSepChar=colSepChar, rowSepChar=rowSepChar)

            parseKey = h2o_cmd.parseFile(None, csvPathname, key2=key2, 
                timeoutSecs=30, separator=colSepInt)
            print csvFilename, 'parse time:', parseKey['response']['time']
            print "Parse result['destination_key']:", parseKey['destination_key']

            print "\n" + csvFilename
            missingValuesDict = h2o_cmd.check_enums_from_inspect(parseKey)
            if missingValuesDict:
                m = [str(k) + ":" + str(v) for k,v in missingValuesDict.iteritems()]
                raise Exception("Looks like columns got flipped to NAs: " + ", ".join(m))

            y = colCount
            kwargs = {'y': y, 'max_iter': 1, 'n_folds': 1, 'alpha': 0.2, 'lambda': 1e-5, 
                'case_mode': '=', 'case': 0}
            start = time.time()
            glm = h2o_cmd.runGLMOnly(parseKey=parseKey, timeoutSecs=timeoutSecs, pollTimeoutSecs=180, **kwargs)
            print "glm end on ", parseKey['destination_key'], 'took', time.time() - start, 'seconds'

            h2o_glm.simpleCheckGLM(self, glm, None, **kwargs)

            GLMModel = glm['GLMModel']
            modelKey = GLMModel['model_key']

            parseKey = h2o_cmd.parseFile(None, csvScorePathname, key2="score_" + key2, 
                timeoutSecs=30, separator=colSepInt)

            start = time.time()
            # score with same dataset (will change to recreated dataset with one less enum
            glmScore = h2o_cmd.runGLMScore(key=parseKey['destination_key'],
                model_key=modelKey, thresholds="0.5", timeoutSecs=timeoutSecs)
            print "glm end on ", parseKey['destination_key'], 'took', time.time() - start, 'seconds'
            ### print h2o.dump_json(glmScore)
            classErr = glmScore['validation']['classErr']
            auc = glmScore['validation']['auc']
            err = glmScore['validation']['err']
            print "classErr:", classErr
            print "err:", err
            print "auc:", auc
Esempio n. 3
0
    def test_parse_nflx_loop_s3n_hdfs(self):
        # typical size of the michal files
        avgMichalSize = 116561140
        avgSynSize = 4020000
        csvFilenameList = [
            # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz"),
            # 100 files takes too long on two machines?
            # I use different files to avoid OS caching effects
            # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[0-9][0-9]", "syn_100.csv", 100 * avgSynSize, 700),
            # ("syn_datasets/syn_7350063254201195578_10000x200.csv_00000", "syn_1.csv", avgSynSize, 700),
            # ("syn_datasets/syn_7350063254201195578_10000x200.csv_0001[0-9]", "syn_10.csv", 10 * avgSynSize, 700),
            # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[23][0-9]", "syn_20.csv", 20 * avgSynSize, 700),
            # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[45678][0-9]", "syn_50.csv", 50 * avgSynSize, 700),

            ("manyfiles-nflx-gz/file_1.dat.gz", "file_1.dat.gz", 1 * avgMichalSize, 300),
            ("manyfiles-nflx-gz/file_[2][0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 700),
            ("manyfiles-nflx-gz/file_[34][0-9].dat.gz", "file_20.dat.gz", 20 * avgMichalSize, 900),

            ("manyfiles-nflx-gz/file_[123][0-9][0-9].dat.gz", "file_300_A.dat.gz", 300 * avgMichalSize, 3600),
            ("manyfiles-nflx-gz/file_[123][0-9][0-9].dat.gz", "file_300_B.dat.gz", 300 * avgMichalSize, 3600),
            ("manyfiles-nflx-gz/file_[123][0-9][0-9].dat.gz", "file_300_C.dat.gz", 300 * avgMichalSize, 3600),
            ("manyfiles-nflx-gz/file_[5-9][0-9].dat.gz", "file_50_A.dat.gz", 50 * avgMichalSize, 3600),
            ("manyfiles-nflx-gz/file_1[0-4][0-9].dat.gz", "file_50_B.dat.gz", 50 * avgMichalSize, 3600),
            ("manyfiles-nflx-gz/file_1[0-9][0-9].dat.gz", "file_100_A.dat.gz", 100 * avgMichalSize, 3600),
            ("manyfiles-nflx-gz/file_2[0-9][0-9].dat.gz", "file_100_B.dat.gz", 100 * avgMichalSize, 3600),
            ("manyfiles-nflx-gz/file_[12][0-9][0-9].dat.gz", "file_200_A.dat.gz", 200 * avgMichalSize, 3600),
            ("manyfiles-nflx-gz/file_[12][0-9][0-9].dat.gz", "file_200_B.dat.gz", 200 * avgMichalSize, 3600),
        ]

        print "Using the -.gz files from s3"
        # want just s3n://home-0xdiag-datasets/manyfiles-nflx-gz/file_1.dat.gz
    
        DO_GLM = True
        USE_S3 = False
        noPoll = False
        benchmarkLogging = ['cpu','disk','jstack','iostats']
        bucket = "home-0xdiag-datasets"
        if USE_S3:
            URI = "s3://home-0xdiag-datasets"
            protocol = "s3"
        else:
            URI = "s3n://home-0xdiag-datasets"
            protocol = "s3n/hdfs"

        # split out the pattern match and the filename used for the hex
        trialMax = 1
        pollTimeoutSecs = 180
        retryDelaySecs = 10
        # use i to forward reference in the list, so we can do multiple outstanding parses below
        for i, (csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
            ## for tryHeap in [54, 28]:
            for tryHeap in [30]:
                
                print "\n", tryHeap,"GB heap, 1 jvm per host, import", protocol, "then parse"
                h2o_hosts.build_cloud_with_hosts(node_count=1, java_heap_GB=tryHeap,
                    enable_benchmark_log=True, timeoutSecs=120, retryDelaySecs=10,
                    # all hdfs info is done thru the hdfs_config michal's ec2 config sets up?
                    # this is for our amazon ec hdfs
                    # see https://github.com/0xdata/h2o/wiki/H2O-and-s3n
                    hdfs_name_node='10.78.14.235:9000',
                    hdfs_version='0.20.2')

                # don't raise exception if we find something bad in h2o stdout/stderr?
                h2o.nodes[0].sandbox_ignore_errors = True

                for trial in range(trialMax):
                    # since we delete the key, we have to re-import every iteration, to get it again
                    # s3n URI thru HDFS is not typical.
                    if USE_S3:
                        importResult = h2o.nodes[0].import_s3(bucket)
                    else:
                        importResult = h2o.nodes[0].import_hdfs(URI)

                    s3nFullList = importResult['succeeded']
                    for k in s3nFullList:
                        key = k['key']
                        # just print the first tile
                        # if 'nflx' in key and 'file_1.dat.gz' in key: 
                        if csvFilepattern in key:
                            # should be s3n://home-0xdiag-datasets/manyfiles-nflx-gz/file_1.dat.gz
                            print "example file we'll use:", key
                            break
                        else:
                            ### print key
                            pass

                    ### print "s3nFullList:", h2o.dump_json(s3nFullList)
                    # error if none? 
                    self.assertGreater(len(s3nFullList),8,"Didn't see more than 8 files in s3n?")

                    s3nKey = URI + "/" + csvFilepattern
                    key2 = csvFilename + "_" + str(trial) + ".hex"
                    print "Loading", protocol, "key:", s3nKey, "to", key2
                    start = time.time()
                    parseKey = h2o.nodes[0].parse(s3nKey, key2,
                        timeoutSecs=timeoutSecs, 
                        retryDelaySecs=retryDelaySecs,
                        pollTimeoutSecs=pollTimeoutSecs,
                        noPoll=noPoll,
                        benchmarkLogging=benchmarkLogging)

                    if noPoll:
                        if (i+1) < len(csvFilenameList):
                            time.sleep(1)
                            h2o.check_sandbox_for_errors()
                            (csvFilepattern, csvFilename, totalBytes2, timeoutSecs) = csvFilenameList[i+1]
                            s3nKey = URI + "/" + csvFilepattern
                            key2 = csvFilename + "_" + str(trial) + ".hex"
                            print "Loading", protocol, "key:", s3nKey, "to", key2
                            parse2Key = h2o.nodes[0].parse(s3nKey, key2,
                                timeoutSecs=timeoutSecs,
                                retryDelaySecs=retryDelaySecs,
                                pollTimeoutSecs=pollTimeoutSecs,
                                noPoll=noPoll,
                                benchmarkLogging=benchmarkLogging)

                        if (i+2) < len(csvFilenameList):
                            time.sleep(1)
                            h2o.check_sandbox_for_errors()
                            (csvFilepattern, csvFilename, totalBytes3, timeoutSecs) = csvFilenameList[i+2]
                            s3nKey = URI + "/" + csvFilepattern
                            key2 = csvFilename + "_" + str(trial) + ".hex"
                            print "Loading", protocol, "key:", s3nKey, "to", key2
                            parse3Key = h2o.nodes[0].parse(s3nKey, key2,
                                timeoutSecs=timeoutSecs, 
                                retryDelaySecs=retryDelaySecs,
                                pollTimeoutSecs=pollTimeoutSecs,
                                noPoll=noPoll,
                                benchmarkLogging=benchmarkLogging)

                    elapsed = time.time() - start
                    print s3nKey, 'parse time:', parseKey['response']['time']
                    print "parse result:", parseKey['destination_key']
                    print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                        "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                    # print stats on all three if noPoll
                    if noPoll:
                        # does it take a little while to show up in Jobs, from where we issued the parse?
                        time.sleep(2)
                        # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                        h2o_jobs.pollWaitJobs(pattern=csvFilename, 
                            timeoutSecs=timeoutSecs, benchmarkLogging=benchmarkLogging)
                        # for getting the MB/sec closer to 'right'
                        totalBytes += totalBytes2 + totalBytes3
                        elapsed = time.time() - start
                        h2o.check_sandbox_for_errors()

                    if totalBytes is not None:
                        fileMBS = (totalBytes/1e6)/elapsed
                        l = '{:d} jvms, {:d}GB heap, {:s} {:s} {:6.2f} MB/sec for {:6.2f} secs'.format(
                            len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, fileMBS, elapsed)
                        print l
                        h2o.cloudPerfH2O.message(l)

                    # BUG here?
                    if not noPoll:
                        # We should be able to see the parse result?
                        h2o_cmd.check_enums_from_inspect(parseKey)

                    #**********************************************************************************
                    # Do GLM too
                    # these are all the columns that are enums in the dataset...too many for GLM!
                    x = range(542) # don't include the output column
                    x.remove(3)
                    x.remove(4)
                    x.remove(5)
                    x.remove(6)
                    x.remove(7)
                    x.remove(8)
                    x.remove(9)
                    x.remove(10)
                    x.remove(11)
                    x.remove(14)
                    x.remove(16)
                    x.remove(17)
                    x.remove(18)
                    x.remove(19)
                    x.remove(20)
                    x.remove(424)
                    x.remove(425)
                    x.remove(426)
                    x.remove(540)
                    x.remove(541)
                    # remove the output too!
                    x.remove(378)
                    x = ",".join(map(str,x))

                    # Argument case error: Value 0.0 is not between 12.0 and 9987.0 (inclusive)
                    if DO_GLM:
                        GLMkwargs = {'x': x, 'y': 378, 'case': 15, 'case_mode': '>', 
                            'max_iter': 10, 'n_folds': 1, 'alpha': 0.2, 'lambda': 1e-5}
                        start = time.time()
                        glm = h2o_cmd.runGLMOnly(parseKey=parseKey, timeoutSecs=timeoutSecs, **GLMkwargs)
                        h2o_glm.simpleCheckGLM(self, glm, None, **GLMkwargs)
                        elapsed = time.time() - start
                        h2o.check_sandbox_for_errors()
                        l = '{:d} jvms, {:d}GB heap, {:s} {:s} GLM: {:6.2f} secs'.format(
                            len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, elapsed)
                        print l
                        h2o.cloudPerfH2O.message(l)
                    #**********************************************************************************

                    print "Deleting key in H2O so we get it from S3 (if ec2) or nfs again.", \
                          "Otherwise it would just parse the cached key."
                    storeView = h2o.nodes[0].store_view()
                    ### print "storeView:", h2o.dump_json(storeView)
                    # "key": "s3n://home-0xdiag-datasets/manyfiles-nflx-gz/file_84.dat.gz"
                    # have to do the pattern match ourself, to figure out what keys to delete
                    # we're deleting the keys in the initial import. We leave the keys we created
                    # by the parse. We use unique dest keys for those, so no worries.
                    # Leaving them is good because things fill up! (spill)
                    h2o_cmd.delete_csv_key(csvFilename, s3nFullList)

                h2o.tear_down_cloud()
                # sticky ports? wait a bit.
                print "Waiting 30 secs before building cloud again (sticky ports?)"
                time.sleep(30)
Esempio n. 4
0
    def test_GLM_many_enums(self):
        SYNDATASETS_DIR = h2o.make_syn_dir()

        if not localhost:
            n = 200
            tryList = [
                (n, 1, 'cD', 300), 
                (n, 2, 'cE', 300), 
                (n, 3, 'cF', 300), 
                (n, 4, 'cG', 300), 
                (n, 5, 'cH', 300), 
                (n, 6, 'cI', 300), 
                ]
        else:
            n = 150
            tryList = [
                (n, 1, 'cD', 300), 
                (n, 2, 'cE', 300), 
                (n, 3, 'cF', 300), 
                (n, 4, 'cG', 300), 
                (n, 5, 'cH', 300), 
                (n, 6, 'cI', 300), 
                (n, 7, 'cJ', 300), 
                (n, 9, 'cK', 300), 
                (n, 10, 'cLA', 300), 
                (n, 11, 'cDA', 300), 
                (n, 12, 'cEA', 300), 
                (n, 13, 'cFA', 300), 
                (n, 14, 'cGA', 300), 
                (n, 15, 'cHA', 300), 
                (n, 16, 'cIA', 300), 
                (n, 17, 'cJA', 300), 
                (n, 19, 'cKA', 300), 
                (n, 20, 'cLA', 300), 
                ]

        ### h2b.browseTheCloud()
        for (rowCount, colCount, key2, timeoutSecs) in tryList:
            # just randomly pick the row and col cases.
            colSepCase = random.randint(0,1)
            colSepCase = 1
            # using the comma is nice to ensure no craziness
            if (colSepCase==0):
                colSepHexString = '01'
                quoteChars = ",\'\"" # more choices for the unquoted string
            else:
                colSepHexString = '2c' # comma
                quoteChars = ""

            colSepChar = colSepHexString.decode('hex')
            colSepInt = int(colSepHexString, base=16)
            print "colSepChar:", colSepChar
            print "colSepInt", colSepInt

            rowSepCase = random.randint(0,1)
            # using this instead, makes the file, 'row-readable' in an editor
            if (rowSepCase==0):
                rowSepHexString = '0a' # newline
            else:
                rowSepHexString = '0d0a' # cr + newline (windows) \r\n

            rowSepChar = rowSepHexString.decode('hex')
            print "rowSepChar:", rowSepChar

            SEEDPERFILE = random.randint(0, sys.maxint)
            csvFilename = 'syn_enums_' + str(rowCount) + 'x' + str(colCount) + '.csv'
            csvPathname = SYNDATASETS_DIR + '/' + csvFilename

            print "Creating random", csvPathname
            write_syn_dataset(csvPathname, rowCount, colCount, SEEDPERFILE, 
                colSepChar=colSepChar, rowSepChar=rowSepChar, quoteChars=quoteChars)

            # FIX! does 'separator=' take ints or ?? hex format
            # looks like it takes the hex string (two chars)
            parseKey = h2o_cmd.parseFile(None, csvPathname, key2=key2, 
                timeoutSecs=30, separator=colSepInt)
            print csvFilename, 'parse time:', parseKey['response']['time']
            print "Parse result['destination_key']:", parseKey['destination_key']

            # We should be able to see the parse result?
            ### inspect = h2o_cmd.runInspect(None, parseKey['destination_key'])
            print "\n" + csvFilename
            missingValuesDict = h2o_cmd.check_enums_from_inspect(parseKey)
            if missingValuesDict:
                m = [str(k) + ":" + str(v) for k,v in missingValuesDict.iteritems()]
                raise Exception("Looks like columns got flipped to NAs: " + ", ".join(m))

            y = colCount
            kwargs = {'y': y, 'max_iter': 1, 'n_folds': 1, 'alpha': 0.2, 'lambda': 1e-5, 
                'case_mode': '=', 'case': 0}
            start = time.time()
            ### glm = h2o_cmd.runGLMOnly(parseKey=parseKey, timeoutSecs=timeoutSecs, pollTimeoutSecs=180, **kwargs)
            print "glm end on ", csvPathname, 'took', time.time() - start, 'seconds'
Esempio n. 5
0
    def test_parse_nflx_loop_s3n_hdfs(self):
        # typical size of the michal files
        avgMichalSize = 116561140
        avgSynSize = 4020000
        avgAzSize = 75169317 # bytes
        csvFilenameList = [
            ("a", "a_1.dat", 1 * avgAzSize, 300),
            ("[a-j]", "a_10.dat", 10 * avgAzSize, 300),
            ("[k-v]", "b_10.dat", 10 * avgAzSize, 800),
            ("[w-z]", "c_4.dat", 4 * avgAzSize, 900),
            # ("manyfiles-nflx-gz/file_1.dat.gz", "file_1.dat.gz", 1 * avgMichalSize, 300),
            # ("manyfiles-nflx-gz/file_[2][0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 700),
            # ("manyfiles-nflx-gz/file_[34][0-9].dat.gz", "file_20.dat.gz", 20 * avgMichalSize, 900),
            # ("manyfiles-nflx-gz/file_[5-9][0-9].dat.gz", "file_50_A.dat.gz", 50 * avgMichalSize, 1800),
            # ("manyfiles-nflx-gz/file_1[0-4][0-9].dat.gz", "file_50_B.dat.gz", 50 * avgMichalSize, 1800),
            # ("manyfiles-nflx-gz/file_1[5-9][0-9].dat.gz", "file_50_C.dat.gz", 50 * avgMichalSize, 1800),
            # ("manyfiles-nflx-gz/file_*.dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 2400),
        ]

        print "Using the -.gz files from s3"
        # want just s3n://home-0xdiag-datasets/manyfiles-nflx-gz/file_1.dat.gz
    
        USE_S3 = False
        noPoll = True
        benchmarkLogging = ['cpu','disk']
        bucket = "to-delete-soon"
        if USE_S3:
            URI = "s3://to-delete-soon"
            protocol = "s3"
        else:
            URI = "s3n://to-delete-soon"
            protocol = "s3n/hdfs"

        # split out the pattern match and the filename used for the hex
        trialMax = 1
        # use i to forward reference in the list, so we can do multiple outstanding parses below
        for i, (csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
            ## for tryHeap in [54, 28]:
            for tryHeap in [54]:
                
                print "\n", tryHeap,"GB heap, 1 jvm per host, import", protocol, "then parse"
                h2o_hosts.build_cloud_with_hosts(node_count=1, java_heap_GB=tryHeap,
                    enable_benchmark_log=True, timeoutSecs=180, retryDelaySecs=10,
                    # all hdfs info is done thru the hdfs_config michal's ec2 config sets up?
                    # this is for our amazon ec hdfs
                    # see https://github.com/0xdata/h2o/wiki/H2O-and-s3n
                    hdfs_name_node='10.78.14.235:9000',
                    hdfs_version='0.20.2')

                # don't raise exception if we find something bad in h2o stdout/stderr?
                h2o.nodes[0].sandbox_ignore_errors = True

                for trial in range(trialMax):
                    # since we delete the key, we have to re-import every iteration, to get it again
                    # s3n URI thru HDFS is not typical.
                    if USE_S3:
                        importResult = h2o.nodes[0].import_s3(bucket)
                    else:
                        importResult = h2o.nodes[0].import_hdfs(URI)

                    s3nFullList = importResult['succeeded']
                    for k in s3nFullList:
                        key = k['key']
                        # just print the first tile
                        # if 'nflx' in key and 'file_1.dat.gz' in key: 
                        if csvFilepattern in key:
                            # should be s3n://home-0xdiag-datasets/manyfiles-nflx-gz/file_1.dat.gz
                            print "example file we'll use:", key
                            break
                        else:
                            ### print key
                            pass

                    ### print "s3nFullList:", h2o.dump_json(s3nFullList)
                    # error if none? 
                    self.assertGreater(len(s3nFullList),8,"Didn't see more than 8 files in s3n?")

                    s3nKey = URI + "/" + csvFilepattern
                    key2 = csvFilename + "_" + str(trial) + ".hex"
                    print "Loading", protocol, "key:", s3nKey, "to", key2
                    start = time.time()
                    parseKey = h2o.nodes[0].parse(s3nKey, key2,
                        timeoutSecs=timeoutSecs, retryDelaySecs=10, pollTimeoutSecs=60,
                        noPoll=noPoll,
                        benchmarkLogging=benchmarkLogging)

                    if noPoll:
                        if (i+1) < len(csvFilenameList): 
                            time.sleep(1)
                            h2o.check_sandbox_for_errors()
                            (csvFilepattern, csvFilename, totalBytes2, timeoutSecs) = csvFilenameList[i+1]
                            s3nKey = URI + "/" + csvFilepattern
                            key2 = csvFilename + "_" + str(trial) + ".hex"
                            print "Loading", protocol, "key:", s3nKey, "to", key2
                            parse2Key = h2o.nodes[0].parse(s3nKey, key2,
                                timeoutSecs=timeoutSecs, retryDelaySecs=10, pollTimeoutSecs=60,
                                noPoll=noPoll,
                                benchmarkLogging=benchmarkLogging)

                        if (i+2) < len(csvFilenameList): 
                            time.sleep(1)
                            h2o.check_sandbox_for_errors()
                            (csvFilepattern, csvFilename, totalBytes3, timeoutSecs) = csvFilenameList[i+2]
                            s3nKey = URI + "/" + csvFilepattern
                            key2 = csvFilename + "_" + str(trial) + ".hex"
                            print "Loading", protocol, "key:", s3nKey, "to", key2
                            parse3Key = h2o.nodes[0].parse(s3nKey, key2,
                                timeoutSecs=timeoutSecs, retryDelaySecs=10, pollTimeoutSecs=60,
                                noPoll=noPoll,
                                benchmarkLogging=benchmarkLogging)

                    elapsed = time.time() - start
                    print s3nKey, 'parse time:', parseKey['response']['time']
                    print "parse result:", parseKey['destination_key']
                    print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                        "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                    # print stats on all three if noPoll
                    if noPoll:
                        # does it take a little while to show up in Jobs, from where we issued the parse?
                        time.sleep(2)
                        # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                        h2o_jobs.pollWaitJobs(pattern=csvFilename, 
                            timeoutSecs=timeoutSecs, benchmarkLogging=benchmarkLogging)
                        # for getting the MB/sec closer to 'right'
                        totalBytes += totalBytes2 + totalBytes3
                        elapsed = time.time() - start
                        h2o.check_sandbox_for_errors()

                    if totalBytes is not None:
                        fileMBS = (totalBytes/1e6)/elapsed
                        l = '{:d} jvms, {:d}GB heap, {:s} {:s} {:6.2f} MB/sec for {:6.2f} secs'.format(
                            len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, fileMBS, elapsed)
                        print l
                        h2o.cloudPerfH2O.message(l)

                    # BUG here?
                    if not noPoll:
                        # We should be able to see the parse result?
                        h2o_cmd.check_enums_from_inspect(parseKey)

                    print "Deleting key in H2O so we get it from S3 (if ec2) or nfs again.", \
                          "Otherwise it would just parse the cached key."

                    storeView = h2o.nodes[0].store_view()
                    ### print "storeView:", h2o.dump_json(storeView)
                    # "key": "s3n://home-0xdiag-datasets/manyfiles-nflx-gz/file_84.dat.gz"
                    # have to do the pattern match ourself, to figure out what keys to delete
                    # we're deleting the keys in the initial import. We leave the keys we created
                    # by the parse. We use unique dest keys for those, so no worries.
                    # Leaving them is good because things fill up! (spill)
                    h2o_cmd.delete_csv_key(csvFilename, s3nFullList)

                h2o.tear_down_cloud()
                # sticky ports? wait a bit.
                print "Waiting 30 secs before building cloud again (sticky ports?)"
                time.sleep(30)
Esempio n. 6
0
    def test_find_numbers(self):
        SYNDATASETS_DIR = h2o.make_syn_dir()

        n = 3
        tryList = [
            (n, 1, 'cD', 300), 
            (n, 2, 'cE', 300), 
            (n, 3, 'cF', 300), 
            (n, 4, 'cG', 300), 
            (n, 5, 'cH', 300), 
            (n, 6, 'cI', 300), 
            (n, 7, 'cJ', 300), 
            (n, 9, 'cK', 300), 
            (n, 10, 'cLA', 300), 
            (n, 11, 'cDA', 300), 
            (n, 12, 'cEA', 300), 
            (n, 13, 'cFA', 300), 
            (n, 14, 'cGA', 300), 
            (n, 15, 'cHA', 300), 
            (n, 16, 'cIA', 300), 
            (n, 17, 'cJA', 300), 
            (n, 19, 'cKA', 300), 
            (n, 20, 'cLA', 300), 
            ]

        ### h2b.browseTheCloud()
        for (rowCount, colCount, key2, timeoutSecs) in tryList:
            # using the comma is nice to ensure no craziness
            if COL_SEP_HIVE:
                colSepHexString = '01'
                quoteChars = ",\'\"" # more choices for the unquoted string
            else:
                colSepHexString = '2c' # comma
                quoteChars = ""

            colSepChar = colSepHexString.decode('hex')
            colSepInt = int(colSepHexString, base=16)
            print "colSepChar:", colSepChar
            print "colSepInt", colSepInt

            rowSepCase = random.randint(0,1)
            # using this instead, makes the file, 'row-readable' in an editor
            if (rowSepCase==0):
                rowSepHexString = '0a' # newline
            else:
                rowSepHexString = '0d0a' # cr + newline (windows) \r\n

            rowSepChar = rowSepHexString.decode('hex')
            print "rowSepChar:", rowSepChar

            SEEDPERFILE = random.randint(0, sys.maxint)
            csvFilename = 'syn_enums_' + str(rowCount) + 'x' + str(colCount) + '.csv'
            csvPathname = SYNDATASETS_DIR + '/' + csvFilename

            print "Creating random", csvPathname
            write_syn_dataset(csvPathname, rowCount, colCount, SEEDPERFILE, 
                colSepChar=colSepChar, rowSepChar=rowSepChar, quoteChars=quoteChars)

            # FIX! does 'separator=' take ints or ?? hex format
            # looks like it takes the hex string (two chars)
            parseKey = h2o_cmd.parseFile(None, csvPathname, key2=key2, 
                timeoutSecs=30, separator=colSepInt)
            print csvFilename, 'parse time:', parseKey['response']['time']
            print "Parse result['destination_key']:", parseKey['destination_key']

            # We should be able to see the parse result?
            ### inspect = h2o_cmd.runInspect(None, parseKey['destination_key'])
            print "\n" + csvFilename
            missingValuesDict = h2o_cmd.check_enums_from_inspect(parseKey)
            if missingValuesDict:
                m = [str(k) + ":" + str(v) for k,v in missingValuesDict.iteritems()]
                raise Exception("Looks like columns got flipped to NAs: " + ", ".join(m))
Esempio n. 7
0
    def test_benchmark_import(self):
        # typical size of the michal files
        avgMichalSizeUncompressed = 237270000 
        avgMichalSize = 116561140 
        avgSynSize = 4020000
        covtype200xSize = 15033863400
        synSize =  183
        if 1==1:
            importFolderPath = '/home/0xdiag/datasets/more1_1200_link'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                ("*[3-4][0-4][0-9].dat.gz", "file_100_A.dat.gz", 100 * avgMichalSize, 3600),
                ("*[3-4][0-4][0-9].dat.gz", "file_100_B.dat.gz", 100 * avgMichalSize, 3600),

                ("*[3-4][0-5][0-9].dat.gz", "file_120_A.dat.gz", 120 * avgMichalSize, 3600),
                ("*[3-4][0-5][0-9].dat.gz", "file_120_B.dat.gz", 120 * avgMichalSize, 3600),

                ("*[3-4][0-6][0-9].dat.gz", "file_140_A.dat.gz", 140 * avgMichalSize, 3600),
                ("*[3-4][0-6][0-9].dat.gz", "file_140_B.dat.gz", 140 * avgMichalSize, 3600),

                ("*[3-4][0-7][0-9].dat.gz", "file_160_A.dat.gz", 160 * avgMichalSize, 3600),
                ("*[3-4][0-7][0-9].dat.gz", "file_160_B.dat.gz", 160 * avgMichalSize, 3600),

                ("*[3-4][0-8][0-9].dat.gz", "file_180_A.dat.gz", 180 * avgMichalSize, 3600),
                ("*[3-4][0-8][0-9].dat.gz", "file_180_B.dat.gz", 180 * avgMichalSize, 3600),

                ("*[3-4][0-9][0-9].dat.gz", "file_200_A.dat.gz", 200 * avgMichalSize, 3600),
                ("*[3-4][0-9][0-9].dat.gz", "file_200_B.dat.gz", 200 * avgMichalSize, 3600),

                ("*[3-5][0-9][0-9].dat.gz", "file_300.dat.gz", 300 * avgMichalSize, 3600),
                ("*[3-5][0-9][0-9].dat.gz", "file_300.dat.gz", 300 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 3600),
            ]

        # csvFilenameList = random.sample(csvFilenameAll,1)
        csvFilenameList = csvFilenameAll

        # split out the pattern match and the filename used for the hex
        trialMax = 1
        # rebuild the cloud for each file
        base_port = 54321
        tryHeap = 28
        # can fire a parse off and go wait on the jobs queue (inspect afterwards is enough?)
        DO_GLM = False
        noPoll = False
        # benchmarkLogging = ['cpu','disk', 'iostats', 'jstack']
        # benchmarkLogging = None
        benchmarkLogging = ['cpu','disk', 'network', 'iostats', 'jstack']
        benchmarkLogging = ['cpu','disk', 'network', 'iostats']
        # IOStatus can hang?
        benchmarkLogging = ['cpu', 'disk' 'network']
        pollTimeoutSecs = 120
        retryDelaySecs = 10

        for i,(csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
            localhost = h2o.decide_if_localhost()
            if (localhost):
                h2o.build_cloud(2,java_heap_GB=tryHeap, base_port=base_port,
                    enable_benchmark_log=True)

            else:
                h2o_hosts.build_cloud_with_hosts(1, java_heap_GB=tryHeap, base_port=base_port, 
                    enable_benchmark_log=True)

            # pop open a browser on the cloud
            ### h2b.browseTheCloud()

            # to avoid sticky ports?
            ### base_port += 2

            for trial in range(trialMax):
                importFolderResult = h2i.setupImportFolder(None, importFolderPath)
                importFullList = importFolderResult['files']
                importFailList = importFolderResult['fails']
                print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)
                # creates csvFilename.hex from file in importFolder dir 

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")
                start = time.time()
                parseKey = h2i.parseImportFolderFile(None, csvFilepattern, importFolderPath, 
                    key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                if noPoll:
                    if (i+1) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes2, timeoutSecs) = csvFilenameList[i+1]
                        parseKey = h2i.parseImportFolderFile(None, csvFilepattern, importFolderPath, 
                            key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                    if (i+2) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes3, timeoutSecs) = csvFilenameList[i+2]
                        parseKey = h2i.parseImportFolderFile(None, csvFilepattern, importFolderPath, 
                            key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                # print stats on all three if noPoll
                if noPoll:
                    # does it take a little while to show up in Jobs, from where we issued the parse?
                    time.sleep(2)
                    # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                    h2o_jobs.pollWaitJobs(pattern=csvFilename,
                        timeoutSecs=timeoutSecs, benchmarkLogging=benchmarkLogging)
                    # for getting the MB/sec closer to 'right'
                    totalBytes += totalBytes2 + totalBytes3
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()


                if totalBytes is not None:
                    fileMBS = (totalBytes/1e6)/elapsed
                    l = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, fileMBS, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                print csvFilepattern, 'parse time:', parseKey['response']['time']
                print "Parse result['destination_key']:", parseKey['destination_key']

                # BUG here?
                if not noPoll:
                    # We should be able to see the parse result?
                    h2o_cmd.check_enums_from_inspect(parseKey)
                        
                # the nflx data doesn't have a small enough # of classes in any col
                # use exec to randomFilter out 200 rows for a quick RF. that should work for everyone?
                origKey = parseKey['destination_key']
                # execExpr = 'a = randomFilter('+origKey+',200,12345678)' 
                execExpr = 'a = slice('+origKey+',1,200)' 
                h2e.exec_expr(h2o.nodes[0], execExpr, "a", timeoutSecs=30)
                # runRFOnly takes the parseKey directly
                newParseKey = {'destination_key': 'a'}

                print "\n" + csvFilepattern
                # poker and the water.UDP.set3(UDP.java) fail issue..
                # constrain depth to 25
                print "Temporarily hacking to do nothing instead of RF on the parsed file"
                ### RFview = h2o_cmd.runRFOnly(trees=1,depth=25,parseKey=newParseKey, timeoutSecs=timeoutSecs)
                ### h2b.browseJsonHistoryAsUrlLastMatch("RFView")

                #**********************************************************************************
                # Do GLM too
                # Argument case error: Value 0.0 is not between 12.0 and 9987.0 (inclusive)
                if DO_GLM:
                    # these are all the columns that are enums in the dataset...too many for GLM!
                    x = range(542) # don't include the output column
                    # remove the output too! (378)
                    for i in [3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 424, 425, 426, 540, 541, 378]:
                        x.remove(i)
                    x = ",".join(map(str,x))

                    GLMkwargs = {'x': x, 'y': 378, 'case': 15, 'case_mode': '>',
                        'max_iter': 10, 'n_folds': 1, 'alpha': 0.2, 'lambda': 1e-5}
                    start = time.time()
                    glm = h2o_cmd.runGLMOnly(parseKey=parseKey, timeoutSecs=timeoutSecs, **GLMkwargs)
                    h2o_glm.simpleCheckGLM(self, glm, None, **GLMkwargs)
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()
                    l = '{:d} jvms, {:d}GB heap, {:s} {:s} GLM: {:6.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                #**********************************************************************************
                h2o_cmd.checkKeyDistribution()
                h2o_cmd.deleteCsvKey(csvFilename, importFolderResult)
                ### time.sleep(3600)
                h2o.tear_down_cloud()
                if not localhost:
                    print "Waiting 30 secs before building cloud again (sticky ports?)"
                    ### time.sleep(30)

                sys.stdout.write('.')
                sys.stdout.flush() 
Esempio n. 8
0
    def test_GLM_many_enums(self):
        SYNDATASETS_DIR = h2o.make_syn_dir()

        if localhost:
            n = 4000
            tryList = [
                (n, 1000, 'cI', 300), 
                ]
        else:
            n = 5
            tryList = [
                (n, 1, 'cD', 300), 
                (n, 2, 'cE', 300), 
                (n, 3, 'cF', 300), 
                (n, 4, 'cG', 300), 
                (n, 5, 'cH', 300), 
                (n, 6, 'cI', 300), 
                (n, 7, 'cJ', 300), 
                (n, 9, 'cK', 300), 
                (n, 10, 'cLA', 300), 
                (n, 11, 'cDA', 300), 
                (n, 12, 'cEA', 300), 
                (n, 13, 'cFA', 300), 
                (n, 14, 'cGA', 300), 
                (n, 15, 'cHA', 300), 
                (n, 16, 'cIA', 300), 
                (n, 17, 'cJA', 300), 
                (n, 19, 'cKA', 300), 
                (n, 20, 'cLA', 300), 
                ]

        ### h2b.browseTheCloud()
        for (rowCount, colCount, key2, timeoutSecs) in tryList:
            # can randomly pick the row and col cases.
            ### colSepCase = random.randint(0,1)
            colSepCase = 1
            # using the comma is nice to ensure no craziness
            if (colSepCase==0):
                colSepHexString = '01'
            else:
                colSepHexString = '2c' # comma

            colSepChar = colSepHexString.decode('hex')
            colSepInt = int(colSepHexString, base=16)
            print "colSepChar:", colSepChar
            print "colSepInt", colSepInt

            rowSepCase = random.randint(0,1)
            # using this instead, makes the file, 'row-readable' in an editor
            if (rowSepCase==0):
                rowSepHexString = '0a' # newline
            else:
                rowSepHexString = '0d0a' # cr + newline (windows) \r\n

            rowSepChar = rowSepHexString.decode('hex')
            print "rowSepChar:", rowSepChar

            SEEDPERFILE = random.randint(0, sys.maxint)
            if DO_TEN_INTEGERS:
                csvFilename = 'syn_rooz_int10_' + str(rowCount) + 'x' + str(colCount) + '.csv'
            else:
                csvFilename = 'syn_rooz_enums_' + str(rowCount) + 'x' + str(colCount) + '.csv'
            csvPathname = SYNDATASETS_DIR + '/' + csvFilename

            print "Creating random", csvPathname
            write_syn_dataset(csvPathname, rowCount, colCount, SEEDPERFILE, 
                colSepChar=colSepChar, rowSepChar=rowSepChar)

            # FIX! does 'separator=' take ints or ?? hex format
            # looks like it takes the hex string (two chars)
            parseKey = h2o_cmd.parseFile(None, csvPathname, key2=key2, 
                timeoutSecs=30, separator=colSepInt)
            print csvFilename, 'parse time:', parseKey['response']['time']
            print "Parse result['destination_key']:", parseKey['destination_key']

            # We should be able to see the parse result?
            ### inspect = h2o_cmd.runInspect(None, parseKey['destination_key'])
            print "\n" + csvFilename
            missingValuesDict = h2o_cmd.check_enums_from_inspect(parseKey)
            if missingValuesDict:
                # we allow some NAs in the list above
                pass
                ### m = [str(k) + ":" + str(v) for k,v in missingValuesDict.iteritems()]
                ### raise Exception("Looks like columns got flipped to NAs: " + ", ".join(m))

            y = colCount
            x = range(colCount)
            x = ",".join(map(str,x))
            kwargs = {'x': x, 'y': y, 'max_iter': 1, 'n_folds': 1, 'alpha': 0.2, 'lambda': 1e-5, 
                'case_mode': '=', 'case': 0}
            start = time.time()
            glm = h2o_cmd.runGLMOnly(parseKey=parseKey, timeoutSecs=timeoutSecs, pollTimeoutSecs=180, **kwargs)
            print "glm end on ", csvPathname, 'took', time.time() - start, 'seconds'
            h2o_glm.simpleCheckGLM(self, glm, None, **kwargs)

            if not h2o.browse_disable:
                h2b.browseJsonHistoryAsUrlLastMatch("GLM.json")
Esempio n. 9
0
    def test_parse_1k_files(self):
        SEED = random.randint(0, sys.maxint)
        # if you have to force to redo a test
        # SEED = 
        random.seed(SEED)
        print "\nUsing random seed:", SEED

        SYNDATASETS_DIR = h2o.make_syn_dir()
        csvFilename = "syn.csv.gz"
        headerData = "ID,CAPSULE,AGE,RACE,DPROS,DCAPS,PSA,VOL,GLEASON"
        totalRows = 10
        maxFilenum = 10000
        for filenum in range(maxFilenum):
            rowData = rand_rowData()
            filePrefix = "%04d" % filenum
            csvPathname = SYNDATASETS_DIR + '/' + filePrefix + "_" + csvFilename
            write_syn_dataset_gz(csvPathname, totalRows, headerData, rowData)

        avgFileSize = os.path.getsize(csvPathname)

        importFolderPath = os.path.abspath(SYNDATASETS_DIR)
        print "\nimportFolderPath:", importFolderPath
        csvFilenameList = [
            ("*_syn.csv.gz", "syn_all.csv", maxFilenum * avgFileSize, 1200),
            ]

        trialMax = 1
        base_port = 54321
        tryHeap = 4
        DO_GLM = True
        noPoll = False
        benchmarkLogging = ['cpu','disk', 'iostats'] # , 'jstack'
        benchmarkLogging = ['cpu','disk']
        pollTimeoutSecs = 120
        retryDelaySecs = 10

        for i,(csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
            localhost = h2o.decide_if_localhost()
            if (localhost):
                h2o.build_cloud(3,java_heap_GB=tryHeap, base_port=base_port,
                    enable_benchmark_log=True)
            else:
                h2o_hosts.build_cloud_with_hosts(1, java_heap_GB=tryHeap, base_port=base_port, 
                    enable_benchmark_log=True)
            ### h2b.browseTheCloud()

            # don't let the config json redirect import folder to s3 or s3n, because
            # we're writing to the syn_datasets locally. (just have to worry about node 0's copy of this state)
            print "This test creates files in syn_datasets for import folder\n" + \
                "so h2o and python need to be same machine"
            h2o.nodes[0].redirect_import_folder_to_s3_path = False
            h2o.nodes[0].redirect_import_folder_to_s3n_path = False

            for trial in range(trialMax):
                importFolderResult = h2i.setupImportFolder(None, importFolderPath)
                importFullList = importFolderResult['succeeded']
                print "importFullList:", importFullList
                importFailList = importFolderResult['failed']
                print "importFailList:", importFailList
                print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")
                start = time.time()
                parseKey = h2i.parseImportFolderFile(None, csvFilepattern, importFolderPath, 
                    key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                if noPoll:
                    # does it take a little while to show up in Jobs, from where we issued the parse?
                    time.sleep(2)
                    # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                    h2o_jobs.pollWaitJobs(pattern=csvFilename,
                        timeoutSecs=timeoutSecs, benchmarkLogging=benchmarkLogging)
                    totalBytes += totalBytes2 + totalBytes3
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()


                if totalBytes is not None:
                    fileMBS = (totalBytes/1e6)/elapsed
                    l = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, fileMBS, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                print csvFilepattern, 'parse time:', parseKey['response']['time']
                print "Parse result['destination_key']:", parseKey['destination_key']

                # BUG here?
                if not noPoll:
                    # We should be able to see the parse result?
                    h2o_cmd.check_enums_from_inspect(parseKey)
                        
                print "\n" + csvFilepattern

                #**********************************************************************************
                # Do GLM too
                # Argument case error: Value 0.0 is not between 12.0 and 9987.0 (inclusive)
                if DO_GLM:
                    GLMkwargs = {'y': 0, 'case': 1, 'case_mode': '>',
                        'max_iter': 10, 'n_folds': 1, 'alpha': 0.2, 'lambda': 1e-5}
                    start = time.time()
                    glm = h2o_cmd.runGLMOnly(parseKey=parseKey, timeoutSecs=timeoutSecs, **GLMkwargs)
                    h2o_glm.simpleCheckGLM(self, glm, None, **GLMkwargs)
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()
                    l = '{:d} jvms, {:d}GB heap, {:s} {:s} GLM: {:6.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                #**********************************************************************************

                h2o_cmd.check_key_distribution()
                h2o_cmd.delete_csv_key(csvFilename, importFullList)

                h2o.tear_down_cloud()
                if not localhost:
                    print "Waiting 30 secs before building cloud again (sticky ports?)"
                    time.sleep(30)

                sys.stdout.write('.')
                sys.stdout.flush() 
Esempio n. 10
0
    def test_benchmark_import(self):
        # typical size of the michal files
        avgMichalSizeUncompressed = 237270000
        avgMichalSize = 116561140
        avgSynSize = 4020000
        covtype200xSize = 15033863400
        synSize = 183
        if 1 == 1:
            importFolderPath = '/home/0xdiag/datasets/more1_1200_link'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                ("*[3-4][0-4][0-9].dat.gz", "file_100_A.dat.gz",
                 100 * avgMichalSize, 3600),
                ("*[3-4][0-4][0-9].dat.gz", "file_100_B.dat.gz",
                 100 * avgMichalSize, 3600),
                ("*[3-4][0-5][0-9].dat.gz", "file_120_A.dat.gz",
                 120 * avgMichalSize, 3600),
                ("*[3-4][0-5][0-9].dat.gz", "file_120_B.dat.gz",
                 120 * avgMichalSize, 3600),
                ("*[3-4][0-6][0-9].dat.gz", "file_140_A.dat.gz",
                 140 * avgMichalSize, 3600),
                ("*[3-4][0-6][0-9].dat.gz", "file_140_B.dat.gz",
                 140 * avgMichalSize, 3600),
                ("*[3-4][0-7][0-9].dat.gz", "file_160_A.dat.gz",
                 160 * avgMichalSize, 3600),
                ("*[3-4][0-7][0-9].dat.gz", "file_160_B.dat.gz",
                 160 * avgMichalSize, 3600),
                ("*[3-4][0-8][0-9].dat.gz", "file_180_A.dat.gz",
                 180 * avgMichalSize, 3600),
                ("*[3-4][0-8][0-9].dat.gz", "file_180_B.dat.gz",
                 180 * avgMichalSize, 3600),
                ("*[3-4][0-9][0-9].dat.gz", "file_200_A.dat.gz",
                 200 * avgMichalSize, 3600),
                ("*[3-4][0-9][0-9].dat.gz", "file_200_B.dat.gz",
                 200 * avgMichalSize, 3600),
                ("*[3-5][0-9][0-9].dat.gz", "file_300.dat.gz",
                 300 * avgMichalSize, 3600),
                ("*[3-5][0-9][0-9].dat.gz", "file_300.dat.gz",
                 300 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
            ]

        # csvFilenameList = random.sample(csvFilenameAll,1)
        csvFilenameList = csvFilenameAll

        # split out the pattern match and the filename used for the hex
        trialMax = 1
        # rebuild the cloud for each file
        base_port = 54321
        tryHeap = 28
        # can fire a parse off and go wait on the jobs queue (inspect afterwards is enough?)
        DO_GLM = False
        noPoll = False
        # benchmarkLogging = ['cpu','disk', 'iostats', 'jstack']
        # benchmarkLogging = None
        benchmarkLogging = ['cpu', 'disk', 'network', 'iostats', 'jstack']
        benchmarkLogging = ['cpu', 'disk', 'network', 'iostats']
        # IOStatus can hang?
        benchmarkLogging = ['cpu', 'disk' 'network']
        pollTimeoutSecs = 120
        retryDelaySecs = 10

        for i, (csvFilepattern, csvFilename, totalBytes,
                timeoutSecs) in enumerate(csvFilenameList):
            localhost = h2o.decide_if_localhost()
            if (localhost):
                h2o.build_cloud(2,
                                java_heap_GB=tryHeap,
                                base_port=base_port,
                                enable_benchmark_log=True)

            else:
                h2o_hosts.build_cloud_with_hosts(1,
                                                 java_heap_GB=tryHeap,
                                                 base_port=base_port,
                                                 enable_benchmark_log=True)

            # pop open a browser on the cloud
            ### h2b.browseTheCloud()

            # to avoid sticky ports?
            ### base_port += 2

            for trial in range(trialMax):
                importFolderResult = h2i.setupImportFolder(
                    None, importFolderPath)
                importFullList = importFolderResult['files']
                importFailList = importFolderResult['fails']
                print "\n Problem if this is not empty: importFailList:", h2o.dump_json(
                    importFailList)
                # creates csvFilename.hex from file in importFolder dir

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message(
                    "Parse " + csvFilename +
                    " Start--------------------------------")
                start = time.time()
                parseKey = h2i.parseImportFolderFile(
                    None,
                    csvFilepattern,
                    importFolderPath,
                    key2=csvFilename + ".hex",
                    timeoutSecs=timeoutSecs,
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                if noPoll:
                    if (i + 1) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes2,
                         timeoutSecs) = csvFilenameList[i + 1]
                        parseKey = h2i.parseImportFolderFile(
                            None,
                            csvFilepattern,
                            importFolderPath,
                            key2=csvFilename + ".hex",
                            timeoutSecs=timeoutSecs,
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                    if (i + 2) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes3,
                         timeoutSecs) = csvFilenameList[i + 2]
                        parseKey = h2i.parseImportFolderFile(
                            None,
                            csvFilepattern,
                            importFolderPath,
                            key2=csvFilename + ".hex",
                            timeoutSecs=timeoutSecs,
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                # print stats on all three if noPoll
                if noPoll:
                    # does it take a little while to show up in Jobs, from where we issued the parse?
                    time.sleep(2)
                    # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                    h2o_jobs.pollWaitJobs(pattern=csvFilename,
                                          timeoutSecs=timeoutSecs,
                                          benchmarkLogging=benchmarkLogging)
                    # for getting the MB/sec closer to 'right'
                    totalBytes += totalBytes2 + totalBytes3
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()

                if totalBytes is not None:
                    fileMBS = (totalBytes / 1e6) / elapsed
                    l = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename,
                        fileMBS, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                print csvFilepattern, 'parse time:', parseKey['response'][
                    'time']
                print "Parse result['destination_key']:", parseKey[
                    'destination_key']

                # BUG here?
                if not noPoll:
                    # We should be able to see the parse result?
                    h2o_cmd.check_enums_from_inspect(parseKey)

                # the nflx data doesn't have a small enough # of classes in any col
                # use exec to randomFilter out 200 rows for a quick RF. that should work for everyone?
                origKey = parseKey['destination_key']
                # execExpr = 'a = randomFilter('+origKey+',200,12345678)'
                execExpr = 'a = slice(' + origKey + ',1,200)'
                h2e.exec_expr(h2o.nodes[0], execExpr, "a", timeoutSecs=30)
                # runRFOnly takes the parseKey directly
                newParseKey = {'destination_key': 'a'}

                print "\n" + csvFilepattern
                # poker and the water.UDP.set3(UDP.java) fail issue..
                # constrain depth to 25
                print "Temporarily hacking to do nothing instead of RF on the parsed file"
                ### RFview = h2o_cmd.runRFOnly(trees=1,depth=25,parseKey=newParseKey, timeoutSecs=timeoutSecs)
                ### h2b.browseJsonHistoryAsUrlLastMatch("RFView")

                #**********************************************************************************
                # Do GLM too
                # Argument case error: Value 0.0 is not between 12.0 and 9987.0 (inclusive)
                if DO_GLM:
                    # these are all the columns that are enums in the dataset...too many for GLM!
                    x = range(542)  # don't include the output column
                    # remove the output too! (378)
                    for i in [
                            3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19,
                            20, 424, 425, 426, 540, 541, 378
                    ]:
                        x.remove(i)
                    x = ",".join(map(str, x))

                    GLMkwargs = {
                        'x': x,
                        'y': 378,
                        'case': 15,
                        'case_mode': '>',
                        'max_iter': 10,
                        'n_folds': 1,
                        'alpha': 0.2,
                        'lambda': 1e-5
                    }
                    start = time.time()
                    glm = h2o_cmd.runGLMOnly(parseKey=parseKey,
                                             timeoutSecs=timeoutSecs,
                                             **GLMkwargs)
                    h2o_glm.simpleCheckGLM(self, glm, None, **GLMkwargs)
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()
                    l = '{:d} jvms, {:d}GB heap, {:s} {:s} GLM: {:6.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename,
                        elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                #**********************************************************************************
                h2o_cmd.checkKeyDistribution()
                h2o_cmd.deleteCsvKey(csvFilename, importFolderResult)
                ### time.sleep(3600)
                h2o.tear_down_cloud()
                if not localhost:
                    print "Waiting 30 secs before building cloud again (sticky ports?)"
                    ### time.sleep(30)

                sys.stdout.write('.')
                sys.stdout.flush()
Esempio n. 11
0
    def test_benchmark_import(self):
        # typical size of the michal files
        avgMichalSizeUncompressed = 237270000 
        avgMichalSize = 116561140 
        avgSynSize = 4020000
        covtype200xSize = 15033863400
        if 1==0:
            importFolderPath = '/home2/0xdiag/datasets'
            print "Using non-.gz'ed files in", importFolderPath
            csvFilenameAll = [
                # I use different files to avoid OS caching effects
                ("manyfiles-nflx/file_1.dat", "file_1.dat", 1 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[2][0-9].dat", "file_10.dat", 10 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[34][0-9].dat", "file_20.dat", 20 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[5-9][0-9].dat", "file_50.dat", 50 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[0-9][0-9]*.dat", "file_100.dat", 100 * avgMichalSizeUncompressed, 700),
                ("onefile-nflx/file_1_to_100.dat", "file_single.dat", 100 * avgMichalSizeUncompressed, 1200),
            ]
        if 1==1: 
            importFolderPath = '/home/0xdiag/datasets'
            print "Using .gz'ed files in", importFolderPath
            # all exactly the same prior to gzip!
            # could use this, but remember import folder -> import folder s3 for jenkins?
            # how would it get it right?
            # os.path.getsize(f)
            csvFilenameAll = [
                # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz", 700),
                # 100 files takes too long on two machines?
                # ("covtype200x.data", "covtype200x.data", 15033863400, 700),
                # I use different files to avoid OS caching effects
                ("covtype200x.data", "covtype200x.data", covtype200xSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[0-9][0-9]", "syn_100.csv", 100 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_00000", "syn_1.csv", avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_0001[0-9]", "syn_10.csv", 10 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[23][0-9]", "syn_20.csv", 20 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[45678][0-9]", "syn_50.csv", 50 * avgSynSize, 700),
                # ("manyfiles-nflx-gz/file_10.dat.gz", "file_10_1.dat.gz", 1 * avgMichalSize, 700),
                # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 700),

                ("manyfiles-nflx-gz/file_1.dat.gz", "file_1.dat.gz", 1 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[2][0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[34][0-9].dat.gz", "file_20.dat.gz", 20 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[5-9][0-9].dat.gz", "file_50.dat.gz", 50 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_*.dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 1200),

                # do it twice
                # ("covtype.data", "covtype.data"),
                # ("covtype20x.data", "covtype20x.data"),
                # "covtype200x.data",
                # "100million_rows.csv",
                # "200million_rows.csv",
                # "a5m.csv",
                # "a10m.csv",
                # "a100m.csv",
                # "a200m.csv",
                # "a400m.csv",
                # "a600m.csv",
                # "billion_rows.csv.gz",
                # "new-poker-hand.full.311M.txt.gz",
                ]
        # csvFilenameList = random.sample(csvFilenameAll,1)
        csvFilenameList = csvFilenameAll

        # split out the pattern match and the filename used for the hex
        trialMax = 1
        # rebuild the cloud for each file
        base_port = 54321
        tryHeap = 10 
        # can fire a parse off and go wait on the jobs queue (inspect afterwards is enough?)
        noPoll = False
        benchmarkLogging = ['cpu','disk', 'iostats', 'jstack']
        pollTimeoutSecs = 120
        retryDelaySecs = 10

        for (csvFilepattern, csvFilename, totalBytes, timeoutSecs) in csvFilenameList:
            localhost = h2o.decide_if_localhost()
            if (localhost):
                h2o.build_cloud(2,java_heap_GB=tryHeap, base_port=base_port,
                    enable_benchmark_log=True)
            else:
                h2o_hosts.build_cloud_with_hosts(1, java_heap_GB=tryHeap, base_port=base_port, 
                    enable_benchmark_log=True)
            # pop open a browser on the cloud
            ### h2b.browseTheCloud()

            # to avoid sticky ports?
            ### base_port += 2

            for trial in range(trialMax):
                importFolderResult = h2i.setupImportFolder(None, importFolderPath)
                importFullList = importFolderResult['succeeded']
                importFailList = importFolderResult['failed']
                print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)
                # creates csvFilename.hex from file in importFolder dir 

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")
                start = time.time()
                parseKey = h2i.parseImportFolderFile(None, csvFilepattern, importFolderPath, 
                    key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                if noPoll:
                    if (i+1) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes2, timeoutSecs) = csvFilenameList[i+1]
                        s3nKey = URI + "/" + csvFilepattern
                        key2 = csvFilename + "_" + str(trial) + ".hex"
                        print "Loading", protocol, "key:", s3nKey, "to", key2
                        parse2Key = h2o.nodes[0].parse(s3nKey, key2,
                            timeoutSecs=timeoutSecs,
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                    if (i+2) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes3, timeoutSecs) = csvFilenameList[i+2]
                        s3nKey = URI + "/" + csvFilepattern
                        key2 = csvFilename + "_" + str(trial) + ".hex"
                        print "Loading", protocol, "key:", s3nKey, "to", key2
                        parse3Key = h2o.nodes[0].parse(s3nKey, key2,
                            timeoutSecs=timeoutSecs,
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                # print stats on all three if noPoll
                if noPoll:
                    # does it take a little while to show up in Jobs, from where we issued the parse?
                    time.sleep(2)
                    # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                    h2o_jobs.pollWaitJobs(pattern=csvFilename,
                        timeoutSecs=timeoutSecs, benchmarkLogging=benchmarkLogging)
                    # for getting the MB/sec closer to 'right'
                    totalBytes += totalBytes2 + totalBytes3
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()


                if totalBytes is not None:
                    fileMBS = (totalBytes/1e6)/elapsed
                    l = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, fileMBS, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                print csvFilepattern, 'parse time:', parseKey['response']['time']
                print "Parse result['destination_key']:", parseKey['destination_key']

                # BUG here?
                if not noPoll:
                    # We should be able to see the parse result?
                    h2o_cmd.check_enums_from_inspect(parseKey)
                        
                # the nflx data doesn't have a small enough # of classes in any col
                # use exec to randomFilter out 200 rows for a quick RF. that should work for everyone?
                origKey = parseKey['destination_key']
                # execExpr = 'a = randomFilter('+origKey+',200,12345678)' 
                execExpr = 'a = slice('+origKey+',1,200)' 
                h2e.exec_expr(h2o.nodes[0], execExpr, "a", timeoutSecs=30)
                # runRFOnly takes the parseKey directly
                newParseKey = {'destination_key': 'a'}

                print "\n" + csvFilepattern
                # poker and the water.UDP.set3(UDP.java) fail issue..
                # constrain depth to 25
                print "Temporarily hacking to do nothing instead of RF on the parsed file"
                ### RFview = h2o_cmd.runRFOnly(trees=1,depth=25,parseKey=newParseKey, timeoutSecs=timeoutSecs)
                ### h2b.browseJsonHistoryAsUrlLastMatch("RFView")

                h2o_cmd.check_key_distribution()
                h2o_cmd.delete_csv_key(csvFilename, importFullList)
                h2o.tear_down_cloud()
                if not localhost:
                    print "Waiting 30 secs before building cloud again (sticky ports?)"
                    time.sleep(30)

                sys.stdout.write('.')
                sys.stdout.flush() 
Esempio n. 12
0
    def test_benchmark_import(self):
        # typical size of the michal files
        avgMichalSizeUncompressed = 237270000
        avgMichalSize = 116561140
        avgSynSize = 4020000
        covtype200xSize = 15033863400
        synSize = 183
        if 1 == 0:
            importFolderPath = '/home/0xdiag/datasets/10k_small_gz'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                ("00[0-4][0-9]_syn.csv.gz", "file_50.dat.gz", 50 * synSize, 700
                 ),
                ("[1][1][0-9][0-9]_.*", "file_100.dat.gz", 100 * synSize, 700),
                ("[1][0-4][0-9][0-9]_.*", "file_500.dat.gz", 500 * synSize,
                 700),
                ("[1][0-9][0-9][0-9]_.*", "file_1000.dat.gz", 1000 * synSize,
                 700),
                ("[0-4][0-9][0-9][0-9]_.*", "file_5000.dat.gz", 5000 * synSize,
                 700),
                ("[0-9][0-9][0-9][0-9]_.*", "file_10000.dat.gz",
                 10000 * synSize, 700),
            ]

        if 1 == 0:
            importFolderPath = '/home/0xdiag/datasets/more1_1200_link'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                # ("*.dat.gz", "file_200.dat.gz", 1200 * avgMichalSize, 1800),
                # ("*.dat.gz", "file_200.dat.gz", 1200 * avgMichalSize, 1800),
                # ("*[1][0-2][0-9].dat.gz", "file_30.dat.gz", 50 * avgMichalSize, 1800),
                ("*file_[0-9][0-9].dat.gz", "file_100.dat.gz",
                 100 * avgMichalSize, 1800),
                ("*file_[12][0-9][0-9].dat.gz", "file_200_A.dat.gz",
                 200 * avgMichalSize, 1800),
                ("*file_[34][0-9][0-9].dat.gz", "file_200_B.dat.gz",
                 200 * avgMichalSize, 1800),
                ("*file_[56][0-9][0-9].dat.gz", "file_200_C.dat.gz",
                 200 * avgMichalSize, 1800),
                ("*file_[78][0-9][0-9].dat.gz", "file_200_D.dat.gz",
                 200 * avgMichalSize, 1800),
                # ("*.dat.gz", "file_1200.dat.gz", 1200 * avgMichalSize, 3600),
            ]

        if 1 == 1:
            importFolderPath = '/home/0xdiag/datasets/more1_1200_link'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                # ("*10[0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 3600),
                # ("*1[0-4][0-9].dat.gz", "file_50.dat.gz", 50 * avgMichalSize, 3600),
                # ("*[1][0-9][0-9].dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 3600),
                # ("*3[0-9][0-9].dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 3600),
                # ("*1[0-9][0-9].dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 1800),
                #("*[1-2][0-9][0-9].dat.gz", "file_200.dat.gz", 200 * avgMichalSize, 3600),
                # ("*[3-4][0-9][0-9].dat.gz", "file_200.dat.gz", 200 * avgMichalSize, 3600),
                ("*[3-4][0-4][0-9].dat.gz", "file_100_A.dat.gz",
                 100 * avgMichalSize, 3600),
                ("*[3-4][0-4][0-9].dat.gz", "file_100_B.dat.gz",
                 100 * avgMichalSize, 3600),
                ("*[3-4][0-5][0-9].dat.gz", "file_120_A.dat.gz",
                 120 * avgMichalSize, 3600),
                ("*[3-4][0-5][0-9].dat.gz", "file_120_B.dat.gz",
                 120 * avgMichalSize, 3600),
                ("*[3-4][0-6][0-9].dat.gz", "file_140_A.dat.gz",
                 140 * avgMichalSize, 3600),
                ("*[3-4][0-6][0-9].dat.gz", "file_140_B.dat.gz",
                 140 * avgMichalSize, 3600),
                ("*[3-4][0-7][0-9].dat.gz", "file_160_A.dat.gz",
                 160 * avgMichalSize, 3600),
                ("*[3-4][0-7][0-9].dat.gz", "file_160_B.dat.gz",
                 160 * avgMichalSize, 3600),
                ("*[3-4][0-8][0-9].dat.gz", "file_180_A.dat.gz",
                 180 * avgMichalSize, 3600),
                ("*[3-4][0-8][0-9].dat.gz", "file_180_B.dat.gz",
                 180 * avgMichalSize, 3600),
                ("*[3-4][0-9][0-9].dat.gz", "file_200_A.dat.gz",
                 200 * avgMichalSize, 3600),
                ("*[3-4][0-9][0-9].dat.gz", "file_200_B.dat.gz",
                 200 * avgMichalSize, 3600),
                ("*[3-5][0-9][0-9].dat.gz", "file_300.dat.gz",
                 300 * avgMichalSize, 3600),
                ("*[3-5][0-9][0-9].dat.gz", "file_300.dat.gz",
                 300 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
                ("*[3-6][0-9][0-9].dat.gz", "file_400.dat.gz",
                 400 * avgMichalSize, 3600),
            ]

        if 1 == 0:
            importFolderPath = '/home/0xdiag/datasets/more1_300_link'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                ("*.dat.gz", "file_300.dat.gz", 300 * avgMichalSize, 3600),
            ]

        if 1 == 0:
            importFolderPath = '/home/0xdiag/datasets/manyfiles-nflx-gz'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                ("*_[123][0-9][0-9]*.dat.gz", "file_300.dat.gz",
                 300 * avgMichalSize, 3600),
                ("*_[1][5-9][0-9]*.dat.gz", "file_100.dat.gz",
                 50 * avgMichalSize, 3600),
            ]

        if 1 == 0:
            importFolderPath = '/home2/0xdiag/datasets'
            print "Using non-.gz'ed files in", importFolderPath
            csvFilenameAll = [
                # I use different files to avoid OS caching effects
                ("manyfiles-nflx/file_[0-9][0-9]*.dat", "file_100.dat",
                 100 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[0-9][0-9]*.dat", "file_100.dat",
                 100 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[0-9][0-9]*.dat", "file_100.dat",
                 100 * avgMichalSizeUncompressed, 700),
                # ("onefile-nflx/file_1_to_100.dat", "file_single.dat", 100 * avgMichalSizeUncompressed, 1200),
                # ("manyfiles-nflx/file_1.dat", "file_1.dat", 1 * avgMichalSizeUncompressed, 700),
                # ("manyfiles-nflx/file_[2][0-9].dat", "file_10.dat", 10 * avgMichalSizeUncompressed, 700),
                # ("manyfiles-nflx/file_[34][0-9].dat", "file_20.dat", 20 * avgMichalSizeUncompressed, 700),
                # ("manyfiles-nflx/file_[5-9][0-9].dat", "file_50.dat", 50 * avgMichalSizeUncompressed, 700),
            ]
        if 1 == 0:
            importFolderPath = '/home/0xdiag/datasets'
            print "Using .gz'ed files in", importFolderPath
            # all exactly the same prior to gzip!
            # could use this, but remember import folder -> import folder s3 for jenkins?
            # how would it get it right?
            # os.path.getsize(f)
            csvFilenameAll = [
                # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz", 700),
                # 100 files takes too long on two machines?
                # ("covtype200x.data", "covtype200x.data", 15033863400, 700),
                # I use different files to avoid OS caching effects
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[0-9][0-9]", "syn_100.csv", 100 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_00000", "syn_1.csv", avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_0001[0-9]", "syn_10.csv", 10 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[23][0-9]", "syn_20.csv", 20 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[45678][0-9]", "syn_50.csv", 50 * avgSynSize, 700),
                # ("manyfiles-nflx-gz/file_10.dat.gz", "file_10_1.dat.gz", 1 * avgMichalSize, 700),
                # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_1.dat.gz", "file_1.dat.gz",
                 1 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[2][0-9].dat.gz", "file_10.dat.gz",
                 10 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[34][0-9].dat.gz", "file_20.dat.gz",
                 20 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[5-9][0-9].dat.gz", "file_50.dat.gz",
                 50 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_1[0-9][0-9].dat.gz",
                 "file_100.dat.gz", 50 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[12][0-9][0-9].dat.gz",
                 "file_200.dat.gz", 50 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[12]?[0-9][0-9].dat.gz",
                 "file_300.dat.gz", 50 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_*.dat.gz", "file_384.dat.gz",
                 100 * avgMichalSize, 1200),
                ("covtype200x.data", "covtype200x.data", covtype200xSize, 700),

                # do it twice
                # ("covtype.data", "covtype.data"),
                # ("covtype20x.data", "covtype20x.data"),
                # "covtype200x.data",
                # "100million_rows.csv",
                # "200million_rows.csv",
                # "a5m.csv",
                # "a10m.csv",
                # "a100m.csv",
                # "a200m.csv",
                # "a400m.csv",
                # "a600m.csv",
                # "billion_rows.csv.gz",
                # "new-poker-hand.full.311M.txt.gz",
            ]
        # csvFilenameList = random.sample(csvFilenameAll,1)
        csvFilenameList = csvFilenameAll

        # split out the pattern match and the filename used for the hex
        trialMax = 1
        # rebuild the cloud for each file
        base_port = 54321
        tryHeap = 28
        # can fire a parse off and go wait on the jobs queue (inspect afterwards is enough?)
        DO_GLM = False
        noPoll = False
        # benchmarkLogging = ['cpu','disk', 'iostats', 'jstack']
        # benchmarkLogging = None
        benchmarkLogging = ['cpu', 'disk', 'network', 'iostats', 'jstack']
        benchmarkLogging = ['cpu', 'disk', 'network', 'iostats']
        # IOStatus can hang?
        benchmarkLogging = ['cpu', 'disk' 'network']
        pollTimeoutSecs = 120
        retryDelaySecs = 10

        jea = '-XX:MaxDirectMemorySize=512m -XX:+PrintGCDetails' + ' -Dh2o.find-ByteBuffer-leaks'
        jea = '-XX:MaxDirectMemorySize=512m -XX:+PrintGCDetails'
        jea = "-XX:+UseParNewGC -XX:+UseConcMarkSweepGC"
        jea = ' -Dcom.sun.management.jmxremote.port=54330' + \
              ' -Dcom.sun.management.jmxremote.authenticate=false' + \
              ' -Dcom.sun.management.jmxremote.ssl=false'  + \
              ' -Dcom.sun.management.jmxremote' + \
              ' -Dcom.sun.management.jmxremote.local.only=false'
        jea = ' -Dlog.printAll=true'

        for i, (csvFilepattern, csvFilename, totalBytes,
                timeoutSecs) in enumerate(csvFilenameList):
            localhost = h2o.decide_if_localhost()
            if (localhost):
                h2o.build_cloud(
                    2,
                    java_heap_GB=tryHeap,
                    base_port=base_port,
                    # java_extra_args=jea,
                    enable_benchmark_log=True)

            else:
                h2o_hosts.build_cloud_with_hosts(
                    1,
                    java_heap_GB=tryHeap / 2,
                    base_port=base_port,
                    # java_extra_args=jea,
                    enable_benchmark_log=True)

            # pop open a browser on the cloud
            ### h2b.browseTheCloud()

            # to avoid sticky ports?
            ### base_port += 2

            for trial in range(trialMax):
                importFolderResult = h2i.setupImportFolder(
                    None, importFolderPath)
                importFullList = importFolderResult['succeeded']
                importFailList = importFolderResult['failed']
                print "\n Problem if this is not empty: importFailList:", h2o.dump_json(
                    importFailList)
                # creates csvFilename.hex from file in importFolder dir

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message(
                    "Parse " + csvFilename +
                    " Start--------------------------------")
                start = time.time()
                parseKey = h2i.parseImportFolderFile(
                    None,
                    csvFilepattern,
                    importFolderPath,
                    key2=csvFilename + ".hex",
                    timeoutSecs=timeoutSecs,
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                if noPoll:
                    if (i + 1) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes2,
                         timeoutSecs) = csvFilenameList[i + 1]
                        parseKey = h2i.parseImportFolderFile(
                            None,
                            csvFilepattern,
                            importFolderPath,
                            key2=csvFilename + ".hex",
                            timeoutSecs=timeoutSecs,
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                    if (i + 2) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes3,
                         timeoutSecs) = csvFilenameList[i + 2]
                        parseKey = h2i.parseImportFolderFile(
                            None,
                            csvFilepattern,
                            importFolderPath,
                            key2=csvFilename + ".hex",
                            timeoutSecs=timeoutSecs,
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                # print stats on all three if noPoll
                if noPoll:
                    # does it take a little while to show up in Jobs, from where we issued the parse?
                    time.sleep(2)
                    # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                    h2o_jobs.pollWaitJobs(pattern=csvFilename,
                                          timeoutSecs=timeoutSecs,
                                          benchmarkLogging=benchmarkLogging)
                    # for getting the MB/sec closer to 'right'
                    totalBytes += totalBytes2 + totalBytes3
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()

                if totalBytes is not None:
                    fileMBS = (totalBytes / 1e6) / elapsed
                    l = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename,
                        fileMBS, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                print csvFilepattern, 'parse time:', parseKey['response'][
                    'time']
                print "Parse result['destination_key']:", parseKey[
                    'destination_key']

                # BUG here?
                if not noPoll:
                    # We should be able to see the parse result?
                    h2o_cmd.check_enums_from_inspect(parseKey)

                # the nflx data doesn't have a small enough # of classes in any col
                # use exec to randomFilter out 200 rows for a quick RF. that should work for everyone?
                origKey = parseKey['destination_key']
                # execExpr = 'a = randomFilter('+origKey+',200,12345678)'
                execExpr = 'a = slice(' + origKey + ',1,200)'
                h2e.exec_expr(h2o.nodes[0], execExpr, "a", timeoutSecs=30)
                # runRFOnly takes the parseKey directly
                newParseKey = {'destination_key': 'a'}

                print "\n" + csvFilepattern
                # poker and the water.UDP.set3(UDP.java) fail issue..
                # constrain depth to 25
                print "Temporarily hacking to do nothing instead of RF on the parsed file"
                ### RFview = h2o_cmd.runRFOnly(trees=1,depth=25,parseKey=newParseKey, timeoutSecs=timeoutSecs)
                ### h2b.browseJsonHistoryAsUrlLastMatch("RFView")

                #**********************************************************************************
                # Do GLM too
                # Argument case error: Value 0.0 is not between 12.0 and 9987.0 (inclusive)
                if DO_GLM:
                    # these are all the columns that are enums in the dataset...too many for GLM!
                    x = range(542)  # don't include the output column
                    # remove the output too! (378)
                    for i in [
                            3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19,
                            20, 424, 425, 426, 540, 541, 378
                    ]:
                        x.remove(i)
                    x = ",".join(map(str, x))

                    GLMkwargs = {
                        'x': x,
                        'y': 378,
                        'case': 15,
                        'case_mode': '>',
                        'max_iter': 10,
                        'n_folds': 1,
                        'alpha': 0.2,
                        'lambda': 1e-5
                    }
                    start = time.time()
                    glm = h2o_cmd.runGLMOnly(parseKey=parseKey,
                                             timeoutSecs=timeoutSecs,
                                             **GLMkwargs)
                    h2o_glm.simpleCheckGLM(self, glm, None, **GLMkwargs)
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()
                    l = '{:d} jvms, {:d}GB heap, {:s} {:s} GLM: {:6.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename,
                        elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                #**********************************************************************************

                h2o_cmd.check_key_distribution()
                h2o_cmd.delete_csv_key(csvFilename, importFullList)
                ### time.sleep(3600)
                h2o.tear_down_cloud()
                if not localhost:
                    print "Waiting 30 secs before building cloud again (sticky ports?)"
                    ### time.sleep(30)

                sys.stdout.write('.')
                sys.stdout.flush()
Esempio n. 13
0
    def test_benchmark_import(self):
        # typical size of the michal files
        avgMichalSizeUncompressed = 237270000
        avgMichalSize = 116561140
        avgSynSize = 4020000
        covtype200xSize = 15033863400
        if 1 == 0:
            importFolderPath = '/home2/0xdiag/datasets'
            print "Using non-.gz'ed files in", importFolderPath
            csvFilenameAll = [
                # I use different files to avoid OS caching effects
                ("manyfiles-nflx/file_1.dat", "file_1.dat",
                 1 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[2][0-9].dat", "file_10.dat",
                 10 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[34][0-9].dat", "file_20.dat",
                 20 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[5-9][0-9].dat", "file_50.dat",
                 50 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[0-9][0-9]*.dat", "file_100.dat",
                 100 * avgMichalSizeUncompressed, 700),
                ("onefile-nflx/file_1_to_100.dat", "file_single.dat",
                 100 * avgMichalSizeUncompressed, 1200),
            ]
        if 1 == 1:
            importFolderPath = '/home/0xdiag/datasets'
            print "Using .gz'ed files in", importFolderPath
            # all exactly the same prior to gzip!
            # could use this, but remember import folder -> import folder s3 for jenkins?
            # how would it get it right?
            # os.path.getsize(f)
            csvFilenameAll = [
                # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz", 700),
                # 100 files takes too long on two machines?
                # ("covtype200x.data", "covtype200x.data", 15033863400, 700),
                # I use different files to avoid OS caching effects
                ("covtype200x.data", "covtype200x.data", covtype200xSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[0-9][0-9]", "syn_100.csv", 100 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_00000", "syn_1.csv", avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_0001[0-9]", "syn_10.csv", 10 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[23][0-9]", "syn_20.csv", 20 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[45678][0-9]", "syn_50.csv", 50 * avgSynSize, 700),
                # ("manyfiles-nflx-gz/file_10.dat.gz", "file_10_1.dat.gz", 1 * avgMichalSize, 700),
                # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_1.dat.gz", "file_1.dat.gz",
                 1 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[2][0-9].dat.gz", "file_10.dat.gz",
                 10 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[34][0-9].dat.gz", "file_20.dat.gz",
                 20 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[5-9][0-9].dat.gz", "file_50.dat.gz",
                 50 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_*.dat.gz", "file_100.dat.gz",
                 100 * avgMichalSize, 1200),

                # do it twice
                # ("covtype.data", "covtype.data"),
                # ("covtype20x.data", "covtype20x.data"),
                # "covtype200x.data",
                # "100million_rows.csv",
                # "200million_rows.csv",
                # "a5m.csv",
                # "a10m.csv",
                # "a100m.csv",
                # "a200m.csv",
                # "a400m.csv",
                # "a600m.csv",
                # "billion_rows.csv.gz",
                # "new-poker-hand.full.311M.txt.gz",
            ]
        # csvFilenameList = random.sample(csvFilenameAll,1)
        csvFilenameList = csvFilenameAll

        # split out the pattern match and the filename used for the hex
        trialMax = 1
        # rebuild the cloud for each file
        base_port = 54321
        tryHeap = 10
        # can fire a parse off and go wait on the jobs queue (inspect afterwards is enough?)
        noPoll = False
        benchmarkLogging = ['cpu', 'disk', 'iostats', 'jstack']
        pollTimeoutSecs = 120
        retryDelaySecs = 10

        for (csvFilepattern, csvFilename, totalBytes,
             timeoutSecs) in csvFilenameList:
            localhost = h2o.decide_if_localhost()
            if (localhost):
                h2o.build_cloud(2,
                                java_heap_GB=tryHeap,
                                base_port=base_port,
                                enable_benchmark_log=True)
            else:
                h2o_hosts.build_cloud_with_hosts(1,
                                                 java_heap_GB=tryHeap,
                                                 base_port=base_port,
                                                 enable_benchmark_log=True)
            # pop open a browser on the cloud
            ### h2b.browseTheCloud()

            # to avoid sticky ports?
            ### base_port += 2

            for trial in range(trialMax):
                importFolderResult = h2i.setupImportFolder(
                    None, importFolderPath)
                importFullList = importFolderResult['succeeded']
                importFailList = importFolderResult['failed']
                print "\n Problem if this is not empty: importFailList:", h2o.dump_json(
                    importFailList)
                # creates csvFilename.hex from file in importFolder dir

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message(
                    "Parse " + csvFilename +
                    " Start--------------------------------")
                start = time.time()
                parseKey = h2i.parseImportFolderFile(
                    None,
                    csvFilepattern,
                    importFolderPath,
                    key2=csvFilename + ".hex",
                    timeoutSecs=timeoutSecs,
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                if noPoll:
                    if (i + 1) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes2,
                         timeoutSecs) = csvFilenameList[i + 1]
                        s3nKey = URI + "/" + csvFilepattern
                        key2 = csvFilename + "_" + str(trial) + ".hex"
                        print "Loading", protocol, "key:", s3nKey, "to", key2
                        parse2Key = h2o.nodes[0].parse(
                            s3nKey,
                            key2,
                            timeoutSecs=timeoutSecs,
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                    if (i + 2) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes3,
                         timeoutSecs) = csvFilenameList[i + 2]
                        s3nKey = URI + "/" + csvFilepattern
                        key2 = csvFilename + "_" + str(trial) + ".hex"
                        print "Loading", protocol, "key:", s3nKey, "to", key2
                        parse3Key = h2o.nodes[0].parse(
                            s3nKey,
                            key2,
                            timeoutSecs=timeoutSecs,
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                # print stats on all three if noPoll
                if noPoll:
                    # does it take a little while to show up in Jobs, from where we issued the parse?
                    time.sleep(2)
                    # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                    h2o_jobs.pollWaitJobs(pattern=csvFilename,
                                          timeoutSecs=timeoutSecs,
                                          benchmarkLogging=benchmarkLogging)
                    # for getting the MB/sec closer to 'right'
                    totalBytes += totalBytes2 + totalBytes3
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()

                if totalBytes is not None:
                    fileMBS = (totalBytes / 1e6) / elapsed
                    l = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename,
                        fileMBS, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                print csvFilepattern, 'parse time:', parseKey['response'][
                    'time']
                print "Parse result['destination_key']:", parseKey[
                    'destination_key']

                # BUG here?
                if not noPoll:
                    # We should be able to see the parse result?
                    h2o_cmd.check_enums_from_inspect(parseKey)

                # the nflx data doesn't have a small enough # of classes in any col
                # use exec to randomFilter out 200 rows for a quick RF. that should work for everyone?
                origKey = parseKey['destination_key']
                # execExpr = 'a = randomFilter('+origKey+',200,12345678)'
                execExpr = 'a = slice(' + origKey + ',1,200)'
                h2e.exec_expr(h2o.nodes[0], execExpr, "a", timeoutSecs=30)
                # runRFOnly takes the parseKey directly
                newParseKey = {'destination_key': 'a'}

                print "\n" + csvFilepattern
                # poker and the water.UDP.set3(UDP.java) fail issue..
                # constrain depth to 25
                print "Temporarily hacking to do nothing instead of RF on the parsed file"
                ### RFview = h2o_cmd.runRFOnly(trees=1,depth=25,parseKey=newParseKey, timeoutSecs=timeoutSecs)
                ### h2b.browseJsonHistoryAsUrlLastMatch("RFView")

                h2o_cmd.check_key_distribution()
                h2o_cmd.delete_csv_key(csvFilename, importFullList)
                h2o.tear_down_cloud()
                if not localhost:
                    print "Waiting 30 secs before building cloud again (sticky ports?)"
                    time.sleep(30)

                sys.stdout.write('.')
                sys.stdout.flush()
Esempio n. 14
0
    def test_benchmark_import(self):
        # typical size of the michal files
        avgMichalSizeUncompressed = 237270000 
        avgMichalSize = 116561140 
        avgSynSize = 4020000
        covtype200xSize = 15033863400
        synSize =  183
        if 1==0:
            # importFolderPath = '/home/0xdiag/datasets'
            importFolderPath = '/home/0xdiag/datasets'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                ("10k_small_gz/*", "file_400.dat.gz", 10000 * synSize , 700),
            ]

        if 1==0:
            importFolderPath = '/home/0xdiag/datasets/more1_1200_link'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                ("*.dat.gz", "file_1200.dat.gz", 1200 * avgMichalSize, 1800),
            ]

        if 1==1:
            importFolderPath = '/home/0xdiag/datasets/more1_1200_link'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                # ("*[1-8][0-9][0-9].dat.gz", "file_800.dat.gz", 800 * avgMichalSize, 1800),

                # ("*[1-4][0-9][0-9].dat.gz", "file_400.dat.gz", 400 * avgMichalSize, 1800), # fails tcp reset
                # ("*[1-2][0-9][0-9].dat.gz", "file_200.dat.gz", 200 * avgMichalSize, 1800),  # fails tcp
                # ("*[1][0-9][0-9].dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 1800),  # fails tcp
                # ("*[1][0-9][0-9].dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 1800),

                # ("*10[0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 1800), 
                # ("*1[0-1][0-9].dat.gz", "file_20_2jvm.dat.gz", 20 * avgMichalSize, 1800), 
                # ("*1[0-4][0-9].dat.gz", "file_50_2jvm.dat.gz", 50 * avgMichalSize, 1800), 
                ("*10[0-9].dat.gz", "file_10_2jvm.dat.gz", 10 * avgMichalSize, 1800), 
                # ("*1[0-4][0-9].dat.gz", "file_50.dat.gz", 50 * avgMichalSize, 1800), 
                # ("*1[0-9][0-9].dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 1800), 
            ]

        if 1==0:
            importFolderPath = '/home/0xdiag/datasets/more1_300_link'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                ("*.dat.gz", "file_300.dat.gz", 300 * avgMichalSize, 1800),
            ]

        if 1==0:
            importFolderPath = '/home/0xdiag/datasets/manyfiles-nflx-gz'
            print "Using .gz'ed files in", importFolderPath
            csvFilenameAll = [
                # this should hit the "more" files too?
                ("*_[123][0-9][0-9]*.dat.gz", "file_600.dat.gz", 2 * 300 * avgMichalSize, 1800),
                ("*_[1][5-9][0-9]*.dat.gz", "file_100.dat.gz", 2 * 50 * avgMichalSize, 1800),
            ]

        if 1==0:
            importFolderPath = '/home2/0xdiag/datasets'
            print "Using non-.gz'ed files in", importFolderPath
            csvFilenameAll = [
                # I use different files to avoid OS caching effects
                ("manyfiles-nflx/file_[0-9][0-9]*.dat", "file_100.dat", 100 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[0-9][0-9]*.dat", "file_100.dat", 100 * avgMichalSizeUncompressed, 700),
                ("manyfiles-nflx/file_[0-9][0-9]*.dat", "file_100.dat", 100 * avgMichalSizeUncompressed, 700),
                # ("onefile-nflx/file_1_to_100.dat", "file_single.dat", 100 * avgMichalSizeUncompressed, 1200),
                # ("manyfiles-nflx/file_1.dat", "file_1.dat", 1 * avgMichalSizeUncompressed, 700),
                # ("manyfiles-nflx/file_[2][0-9].dat", "file_10.dat", 10 * avgMichalSizeUncompressed, 700),
                # ("manyfiles-nflx/file_[34][0-9].dat", "file_20.dat", 20 * avgMichalSizeUncompressed, 700),
                # ("manyfiles-nflx/file_[5-9][0-9].dat", "file_50.dat", 50 * avgMichalSizeUncompressed, 700),
            ]
        if 1==0: 
            importFolderPath = '/home/0xdiag/datasets'
            print "Using .gz'ed files in", importFolderPath
            # all exactly the same prior to gzip!
            # could use this, but remember import folder -> import folder s3 for jenkins?
            # how would it get it right?
            # os.path.getsize(f)
            csvFilenameAll = [
                # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz", 700),
                # 100 files takes too long on two machines?
                # ("covtype200x.data", "covtype200x.data", 15033863400, 700),
                # I use different files to avoid OS caching effects
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[0-9][0-9]", "syn_100.csv", 100 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_00000", "syn_1.csv", avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_0001[0-9]", "syn_10.csv", 10 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[23][0-9]", "syn_20.csv", 20 * avgSynSize, 700),
                # ("syn_datasets/syn_7350063254201195578_10000x200.csv_000[45678][0-9]", "syn_50.csv", 50 * avgSynSize, 700),
                # ("manyfiles-nflx-gz/file_10.dat.gz", "file_10_1.dat.gz", 1 * avgMichalSize, 700),
                # ("manyfiles-nflx-gz/file_1[0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 700),

                ("manyfiles-nflx-gz/file_*.dat.gz", "file_100.dat.gz", 100 * avgMichalSize, 1200),
                ("manyfiles-nflx-gz/file_1.dat.gz", "file_1.dat.gz", 1 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[2][0-9].dat.gz", "file_10.dat.gz", 10 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[34][0-9].dat.gz", "file_20.dat.gz", 20 * avgMichalSize, 700),
                ("manyfiles-nflx-gz/file_[5-9][0-9].dat.gz", "file_50.dat.gz", 50 * avgMichalSize, 700),
                # ("covtype200x.data", "covtype200x.data", covtype200xSize, 700),

                # do it twice
                # ("covtype.data", "covtype.data"),
                # ("covtype20x.data", "covtype20x.data"),
                # "covtype200x.data",
                # "100million_rows.csv",
                # "200million_rows.csv",
                # "a5m.csv",
                # "a10m.csv",
                # "a100m.csv",
                # "a200m.csv",
                # "a400m.csv",
                # "a600m.csv",
                # "billion_rows.csv.gz",
                # "new-poker-hand.full.311M.txt.gz",
                ]
        # csvFilenameList = random.sample(csvFilenameAll,1)
        csvFilenameList = csvFilenameAll

        # split out the pattern match and the filename used for the hex
        trialMax = 1
        # rebuild the cloud for each file
        base_port = 54321
        tryHeap = 4
        # can fire a parse off and go wait on the jobs queue (inspect afterwards is enough?)
        DO_GLM = False
        noPoll = False
        # benchmarkLogging = ['cpu','disk', 'iostats', 'jstack']
        # benchmarkLogging = None
        benchmarkLogging = ['cpu','disk', 'network', 'iostats']
        pollTimeoutSecs = 120
        retryDelaySecs = 10

        jea = '-XX:MaxDirectMemorySize=512m -XX:+PrintGCDetails' + ' -Dh2o.find-ByteBuffer-leaks'
        jea = '-XX:MaxDirectMemorySize=512m -XX:+PrintGCDetails'

        for i,(csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList):
            localhost = h2o.decide_if_localhost()
            if (localhost):
                h2o.build_cloud(2,java_heap_GB=tryHeap, base_port=base_port,
                    enable_benchmark_log=True)

            else:
                h2o_hosts.build_cloud_with_hosts(1, java_heap_GB=tryHeap, base_port=base_port, 
                    enable_benchmark_log=True)

            # pop open a browser on the cloud
            ### h2b.browseTheCloud()

            # to avoid sticky ports?
            ### base_port += 2

            for trial in range(trialMax):
                importFolderResult = h2i.setupImportFolder(None, importFolderPath)
                importFullList = importFolderResult['succeeded']
                importFailList = importFolderResult['failed']
                print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList)
                # creates csvFilename.hex from file in importFolder dir 

                h2o.cloudPerfH2O.change_logfile(csvFilename)
                h2o.cloudPerfH2O.message("")
                h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------")
                start = time.time()
                parseKey = h2i.parseImportFolderFile(None, csvFilepattern, importFolderPath, 
                    key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                    retryDelaySecs=retryDelaySecs,
                    pollTimeoutSecs=pollTimeoutSecs,
                    noPoll=noPoll,
                    benchmarkLogging=benchmarkLogging)

                if noPoll:
                    if (i+1) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes2, timeoutSecs) = csvFilenameList[i+1]
                        parseKey = h2i.parseImportFolderFile(None, csvFilepattern, importFolderPath, 
                            key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                    if (i+2) < len(csvFilenameList):
                        time.sleep(1)
                        h2o.check_sandbox_for_errors()
                        (csvFilepattern, csvFilename, totalBytes3, timeoutSecs) = csvFilenameList[i+2]
                        parseKey = h2i.parseImportFolderFile(None, csvFilepattern, importFolderPath, 
                            key2=csvFilename + ".hex", timeoutSecs=timeoutSecs, 
                            retryDelaySecs=retryDelaySecs,
                            pollTimeoutSecs=pollTimeoutSecs,
                            noPoll=noPoll,
                            benchmarkLogging=benchmarkLogging)

                elapsed = time.time() - start
                print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \
                    "%d pct. of timeout" % ((elapsed*100)/timeoutSecs)

                # print stats on all three if noPoll
                if noPoll:
                    # does it take a little while to show up in Jobs, from where we issued the parse?
                    time.sleep(2)
                    # FIX! use the last (biggest?) timeoutSecs? maybe should increase since parallel
                    h2o_jobs.pollWaitJobs(pattern=csvFilename,
                        timeoutSecs=timeoutSecs, benchmarkLogging=benchmarkLogging)
                    # for getting the MB/sec closer to 'right'
                    totalBytes += totalBytes2 + totalBytes3
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()


                if totalBytes is not None:
                    fileMBS = (totalBytes/1e6)/elapsed
                    l = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, fileMBS, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                print csvFilepattern, 'parse time:', parseKey['response']['time']
                print "Parse result['destination_key']:", parseKey['destination_key']

                # BUG here?
                if not noPoll:
                    # We should be able to see the parse result?
                    h2o_cmd.check_enums_from_inspect(parseKey)
                        
                # the nflx data doesn't have a small enough # of classes in any col
                # use exec to randomFilter out 200 rows for a quick RF. that should work for everyone?
                origKey = parseKey['destination_key']
                # execExpr = 'a = randomFilter('+origKey+',200,12345678)' 
                execExpr = 'a = slice('+origKey+',1,200)' 
                h2e.exec_expr(h2o.nodes[0], execExpr, "a", timeoutSecs=30)
                # runRFOnly takes the parseKey directly
                newParseKey = {'destination_key': 'a'}

                print "\n" + csvFilepattern
                # poker and the water.UDP.set3(UDP.java) fail issue..
                # constrain depth to 25
                print "Temporarily hacking to do nothing instead of RF on the parsed file"
                ### RFview = h2o_cmd.runRFOnly(trees=1,depth=25,parseKey=newParseKey, timeoutSecs=timeoutSecs)
                ### h2b.browseJsonHistoryAsUrlLastMatch("RFView")

                #**********************************************************************************
                # Do GLM too
                # Argument case error: Value 0.0 is not between 12.0 and 9987.0 (inclusive)
                if DO_GLM:
                    # these are all the columns that are enums in the dataset...too many for GLM!
                    x = range(542) # don't include the output column
                    # remove the output too! (378)
                    for i in [3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 424, 425, 426, 540, 541, 378]:
                        x.remove(i)
                    x = ",".join(map(str,x))

                    GLMkwargs = {'x': x, 'y': 378, 'case': 15, 'case_mode': '>',
                        'max_iter': 10, 'n_folds': 1, 'alpha': 0.2, 'lambda': 1e-5}
                    start = time.time()
                    glm = h2o_cmd.runGLMOnly(parseKey=parseKey, timeoutSecs=timeoutSecs, **GLMkwargs)
                    h2o_glm.simpleCheckGLM(self, glm, None, **GLMkwargs)
                    elapsed = time.time() - start
                    h2o.check_sandbox_for_errors()
                    l = '{:d} jvms, {:d}GB heap, {:s} {:s} GLM: {:6.2f} secs'.format(
                        len(h2o.nodes), tryHeap, csvFilepattern, csvFilename, elapsed)
                    print l
                    h2o.cloudPerfH2O.message(l)

                #**********************************************************************************

                h2o_cmd.check_key_distribution()
                h2o_cmd.delete_csv_key(csvFilename, importFullList)
                ### time.sleep(3600)
                h2o.tear_down_cloud()
                if not localhost:
                    print "Waiting 30 secs before building cloud again (sticky ports?)"
                    ### time.sleep(30)

                sys.stdout.write('.')
                sys.stdout.flush()