Esempio n. 1
0
def test_silly_geo_to_h3():
    lat, lng = 37.3615593, -122.0553238

    expected0 = '85283473fffffff'
    out0 = h3.geo_to_h3(lat, lng, 5)
    assert out0 == expected0

    out1 = h3.geo_to_h3(lat + 180.0, lng + 360.0, 5)
    expected1 = '85ca2d53fffffff'
    assert out1 == expected1
Esempio n. 2
0
    def add_test_line_edges(self, test_lines):
        og_lines = copy.copy(test_lines)
        test_lines = test_lines.to_crs("epsg:3857")
        max_node_full_graph = max(self.convert_ids.keys())
        flip_node = {v: k for k, v in self.convert_ids.items()}

        income_fn = f'{self.where}/{self.where.lower()}_income_pct.csv'
        target_hex = []
        if os.path.isfile(income_fn):
            income_df = pd.read_csv(income_fn)
            income_df = income_df[income_df['pct_above'] >= 0.5]
            target_hex = income_df['hex'].to_list()

        for i, line in enumerate(test_lines.geometry):
            demand, node = line.coords[:]
            s_coord_string = f'[{demand[0]:.0f}, {demand[1]:.0f}]'
            e_coord_string = f'[{node[0]:.0f}, {node[1]:.0f}]'

            end = self.look_up.get(e_coord_string, None)
            start = self.look_up.get(s_coord_string, None)

            if end is None:
                continue

            if start:
                continue

            if self.edges.get((start, end), False) or self.edges.get((end, start), False):
                continue

            if start is None:
                start = self.index
                max_node_full_graph += 1
                self.convert_ids[max_node_full_graph] = start
                self.look_up[s_coord_string] = start
                self.index += 1

            self.demand_nodes[start] = 1
            self.demand_nodes[end] = 1
            self.nodes_to_connect.add(start)

            if target_hex:
                ll_line_demand, ll_line_node = og_lines.geometry.iloc[i].coords[:]
                demand_hex = h3.geo_to_h3(ll_line_demand[1], ll_line_demand[0], 10)
                node_hex = h3.geo_to_h3(ll_line_node[1], ll_line_node[0], 10)
                if demand_hex in target_hex or node_hex in target_hex:
                    self.demand_nodes[start] = 0
                    self.demand_nodes[end] = 0
                    self.nodes_to_connect.remove(start)

            self.edge_to_geom[(max_node_full_graph, flip_node[end])] = line.wkt
            self.edges[(start, end)] = line.length
        self.flip_look_up = {v: k for k, v in self.look_up.items()}
Esempio n. 3
0
def add_h3_index(gdf):
    coords = gdf[["lat", "lng"]].values
    index_7, index_8, index_9 = [], [], []
    for coord in tqdm(coords):
        index_7.append(h3.geo_to_h3(coord[0], coord[1], 7))
        index_8.append(h3.geo_to_h3(coord[0], coord[1], 8))
        index_9.append(h3.geo_to_h3(coord[0], coord[1], 9))

    gdf["h3_7"] = index_7
    gdf["h3_8"] = index_8
    gdf["h3_9"] = index_9

    return gdf
Esempio n. 4
0
def test_validation_geo():
    h = '8a28308280fffff'  # invalid hex

    with pytest.raises(H3CellError):
        h3.h3_to_geo(h)

    with pytest.raises(H3ResolutionError):
        h3.geo_to_h3(0, 0, 17)

    with pytest.raises(H3CellError):
        h3.h3_to_geo_boundary(h)

    with pytest.raises(H3CellError):
        h3.h3_indexes_are_neighbors(h, h)
Esempio n. 5
0
def test_areas_at_00():
    areas_km2 = [
        2.562182162955495529e+06,
        4.476842018179409206e+05,
        6.596162242711056024e+04,
        9.228872919002589697e+03,
        1.318694490797110348e+03,
        1.879593512281297762e+02,
        2.687164354763186225e+01,
        3.840848847060638782e+00,
        5.486939641329895423e-01,
        7.838600808637447015e-02,
        1.119834221989390345e-02,
        1.599777169186613647e-03,
        2.285390931423379875e-04,
        3.264850232091780848e-05,
        4.664070326136773890e-06,
        6.662957615868890711e-07,
    ]

    out = [h3.cell_area(h3.geo_to_h3(0, 0, r), unit='km^2') for r in range(16)]

    assert approx2(out, areas_km2)

    areas_rads2 = [
        6.312389871006786335e-02,
        1.102949377223657809e-02,
        1.625081476657283096e-03,
        2.273696413041990331e-04,
        3.248837599063685022e-05,
        4.630711750349743332e-06,
        6.620305651949173071e-07,
        9.462611873890716096e-08,
        1.351804829317986891e-08,
        1.931178237937334527e-09,
        2.758910081529350229e-10,
        3.941334595426616175e-11,
        5.630465614578665530e-12,
        8.043537197853909460e-13,
        1.149076389260636790e-13,
        1.641537700693487648e-14,
    ]

    out = [
        h3.cell_area(h3.geo_to_h3(0, 0, r), unit='rads^2') for r in range(16)
    ]

    assert approx2(out, areas_rads2)
Esempio n. 6
0
    def add_hex(self, lat: float, lng: float, name=None):
        """Insert a hex into the HexDict.
        
        REQUIRES: 
            lat: latitude of the coordinate. 
            lng: longitude of the coordinate.
        
        EFFECTS:
            -> If the RES_MAX hex does not exist, then the RES_MAX hex is added,
            and the raw density is set to 1. 
            -> If the RES_MAX hex already exists, then the raw density of the hex
            is just incremented by 1.

        RETURNS: Hexagon
            returns the RES_MAX hexagon of the given coordinates.
        """

        hex_id = h3.geo_to_h3(lat, lng, RES_MAX)
        if hex_id not in self.hex_dict[RES_MAX]:
            self.hex_dict[RES_MAX][hex_id] = Hexagon(hex_id)
            self.hex_dict[RES_MAX][hex_id].raw_density = 1
        else:
            self.hex_dict[RES_MAX][hex_id].raw_density += 1

        self.hex_dict[RES_MAX][hex_id].residents.append(name)
        return self.hex_dict[RES_MAX][hex_id]
def lat_lng_2_h3(lat, lng, res):
    import h3
    try:
        result = h3.geo_to_h3(lat, lng, res)
        return result
    except:
        return None  # invalid coordinates will result in null index value.
Esempio n. 8
0
    def create(rs: Union[ResultSet, Query],
               geom_column: str = 'geom',
               name: Optional[str] = None,
               resolution: Optional[int] = 0,
               plot: str = "size",
               column: Optional[str] = None,
               group_by: Optional[str] = None):
        gdf = to_gdf(rs, geom_column)
        center = None
        zoom = None
        if len(gdf):
            if gdf.crs is None:
                gdf = gdf.set_crs(epsg=4326)
            if gdf.crs.to_epsg() != 4326:
                gdf = gdf.to_crs(epsg=4326)
            center = get_center(gdf)
            zoom = get_zoom(gdf)

        if len(gdf) and resolution:
            # Add H3 index
            hex_col = 'hex' + str(resolution)
            # H3 uses lat, lon
            gdf[hex_col] = gdf[GEOM_COL].apply(
                lambda geom: geo_to_h3(geom.y, geom.x, resolution), 1)

            if group_by:
                # Rows may be grouped by any field in a JSON
                data_to_group = QueryResult.flatten_dataframe(gdf, group_by)
                if "." in group_by:
                    _, group_by = group_by.rsplit(".", 1)
                # Join rows with the same value in group_by field
                data_to_group = data_to_group.groupby([hex_col, group_by],
                                                      sort=False,
                                                      as_index=False).size()
            elif column and "." in column:
                # Flatten the dataframe so we may calculate means etc. for the desired column
                data_to_group = QueryResult.flatten_dataframe(gdf, column)
                _, column = column.rsplit(".", 1)
            else:
                data_to_group = gdf

            groupby = data_to_group.groupby(hex_col,
                                            sort=False,
                                            as_index=False)
            if column:
                groupby = groupby[column]
            # plot = size (or mean, or median, or max, or min) of rows within the same hex
            # Available functions: https://pandas.pydata.org/docs/reference/groupby.html
            results = getattr(groupby, plot)()
            # Add centroid geometry just in case. Of course, H3 has lat lon in the wrong order again
            centroid_lat_lon = results[hex_col].map(lambda hex: h3_to_geo(hex))
            # Convert to GeoSeries first (https://github.com/Toblerity/Shapely/issues/1096#issuecomment-962988370)
            results[GEOM_COL] = gpd.GeoSeries(
                [Point(geom[1], geom[0]) for geom in centroid_lat_lon])
            gdf = gpd.GeoDataFrame(results, geometry=GEOM_COL, crs=gdf.crs)
            gdf = gdf.set_index(hex_col)
            # retain hex index as column too, so it can be plotted
            gdf[hex_col] = gdf.index

        return QueryResult(gdf, center, zoom, name)
Esempio n. 9
0
    def on_post(self, req, resp):
        resp.status = falcon.HTTP_200
        credentials = json.loads(req.stream.read())
        body = json.loads(credentials["body"])
        wind_power = body["windPower"];
        offset = body["offset"];
        resolution = body["resolution"];
        trees = body["trees"];
        tic = time.perf_counter()
        wind = Wind();
        trees_out = [];
        for tree in trees:
            longitude = tree["longitude"];
            latitude = tree["latitude"];
            color = tree["color"];
            polygon = wind.getWindLayerCoordinates(longitude, latitude, wind_power, offset)
            geoJson = {
                'type': 'Polygon',
                'coordinates': [polygon]
            }

            hexagons = h3.polyfill(geoJson, resolution)
            h3_index = h3.geo_to_h3(latitude, longitude, resolution);
            for hex in hexagons:
                direction = h3.h3_distance(h3_index, hex);
                opacity = 255 - direction * (80 / wind_power);
                if (opacity > 0):
                    trees_out.append({ 'opacity': opacity, 'hex': hex, 'color': color });
        toc = time.perf_counter()
        print(f"Downloaded the tutorial in {(toc - tic)*1000:4f} ms")
        content = {
            'hex': json.dumps(trees_out, default=serialize_sets)
        }

        resp.body = json.dumps(content)
Esempio n. 10
0
def counts_by_hexagon(plot_variable, df, resolution):
    """
    Use h3.geo_to_h3 to index each data point into the spatial index of the specified resolution.
    Use h3.h3_to_geo_boundary to obtain the geometries of these hexagons
    
    Ex counts_by_hexagon(data, 9)
    """
    df = df[["lat", "lng", plot_variable]]

    df["hex_id"] = df.apply(
        lambda row: h3.geo_to_h3(row["lat"], row["lng"], resolution), axis=1)

    df_aggreg = df.groupby(by="hex_id").size().reset_index()
    #     print(df_aggreg.columns)
    #     import numpy as np
    df_aggreg = df.groupby(['hex_id'], as_index=True).agg({
        plot_variable: 'mean'
    }).rename(columns={
        plot_variable: 'value'
    }).reset_index()
    df_aggreg = df_aggreg[['hex_id', 'value']]
    df_aggreg = df_aggreg[df_aggreg['value'] != np.inf]

    df_aggreg["geometry"] = df_aggreg.hex_id.apply(
        lambda x: {
            "type": "Polygon",
            "coordinates": [h3.h3_to_geo_boundary(h=x, geo_json=True)]
        })

    return df_aggreg
Esempio n. 11
0
def lat_lng_to_h3():
    import h3

    h3_key = h3.geo_to_h3(lat=48.853, lng=2.348, resolution=8)
    print(h3_key)
    # returns
    "881fb46625fffff"
Esempio n. 12
0
def insertItem(data, h3index9):
    latlon_ary = data["latlon"].split(",")
    h3index8 = h3.geo_to_h3(float(latlon_ary[0]), float(latlon_ary[1]), 8)
    h3index7 = h3.geo_to_h3(float(latlon_ary[0]), float(latlon_ary[1]), 7)
    h3index6 = h3.geo_to_h3(float(latlon_ary[0]), float(latlon_ary[1]), 6)
    dtnow = datetime.now()
    time = dtnow.strftime("%Y%m%d-%H%M%S") + dtnow.strftime("%f")[0:3]
    data["h3-9"] = h3index9 + "_" + time
    data["h3-8"] = h3index8
    data["h3-7"] = h3index7
    data["h3-6"] = h3index6

    # homepageがなければgoogleから探す
    if "homepage" not in data or not data["homepage"]:
        setSiteToData(data)

    checkIFrameEnableItem(data)
    insertItemD(data)
def h3_2set_polyfill(geometry, resolution):
    def to_h3(geometry):
        # buffering can result in MultiPolygon geometries
        if 'MultiPolygon' in geometry.geom_type:
            geometry = list(geometry.geoms)
        else:
            geometry = [geometry]

        hex_set = set()
        for p in geometry:
            p_geojson = shapely.geometry.mapping(p)
            hex_set = hex_set.union(h3.polyfill_geojson(p_geojson, resolution))

        return hex_set

    def get_result_struct(hex_i, polygon, dirty_set):
        if hex_i in dirty_set:
            hex_polygon = shapely.geometry.Polygon(
                h3.h3_to_geo_boundary(hex_i, geo_json=True))
            intersection = polygon.intersection(hex_polygon)
            if intersection.is_empty:  # does not represent any area of the original geometry
                return None
            elif intersection.equals(
                    hex_polygon):  # fully contained by the original geometry
                return (hex_i, False, None)
            else:
                return (hex_i, True, intersection.wkb
                        )  # partially contained by the original geometry
        else:
            return (
                hex_i, False, None
            )  # fully contained by the original geometry (not in the dirty set)

    polygon = geometry  # placeholder for when we are loading wkt/wkb in udfs

    # get centroid of the geometry
    # get centroid index
    # get centroid index geometry
    # compute radius based on teh minimum enclosing rectangel (radius of pseudo minimal enclosing circle)
    cent = polygon.centroid.xy
    centroid_hex = h3.geo_to_h3(cent[1][0], cent[0][0], resolution)
    centroid_geom = shapely.geometry.Polygon(
        h3.h3_to_geo_boundary(centroid_hex, geo_json=True))
    radius = math.sqrt(centroid_geom.minimum_rotated_rectangle.area) / 2

    dirty = polygon.boundary.buffer(radius)

    original_set = to_h3(polygon)
    dirty_set = to_h3(dirty)

    result = [
        get_result_struct(hex_i, polygon, dirty_set)
        for hex_i in list(original_set.union(dirty_set))
    ]
    result = [c for c in result if c is not None]

    return result
Esempio n. 14
0
def test_h3_is_valid():
    assert h3.h3_is_valid('85283473fffffff')
    assert h3.h3_is_valid('850dab63fffffff')
    assert not h3.h3_is_valid('lolwut')

    # H3 0.x Addresses are not considered valid
    assert not h3.h3_is_valid('5004295803a88')

    for res in range(16):
        assert h3.h3_is_valid(h3.geo_to_h3(37, -122, res))
Esempio n. 15
0
def h3_2set_polyfill(geometry, resolution):
    # we need to account for possibility of MultiPolygon shapes
    def to_h3(geometry):
        if 'MultiPolygon' in geometry.geom_type:
            geometry = list(geometry.geoms)
        else:
            geometry = [geometry]

        hex_set = set()
        for p in geometry:
            p_geojson = shapely.geometry.mapping(p)
            hex_set = hex_set.union(h3.polyfill_geojson(p_geojson, resolution))

        return hex_set

    # convenience method for converting an index to a chip of a polygon
    def get_result_struct(hex_i, polygon, dirty_set):
        if hex_i in dirty_set:
            hex_polygon = shapely.geometry.Polygon(
                h3.h3_to_geo_boundary(hex_i, geo_json=True))
            intersection = polygon.intersection(hex_polygon)
            if intersection.is_empty:
                return None
            elif intersection.equals(hex_polygon):
                return (hex_i, False, None)
            else:
                return (hex_i, True, intersection.wkb)
        else:
            return (hex_i, False, None)

    polygon = shapely.wkb.loads(bytes(geometry))

    # compute the buffer radius
    # we cannot use the hexagon side lenght due to curvatrure
    # we use minimum rotated rectange - we assume that the rectangle is near rectangle in shape
    # the alternative would be to iterate through boundary vertices and take the longest side
    cent = polygon.centroid.xy
    centroid_hex = h3.geo_to_h3(cent[1][0], cent[0][0], resolution)
    centroid_geom = shapely.geometry.Polygon(
        h3.h3_to_geo_boundary(centroid_hex, geo_json=True))
    radius = math.sqrt(centroid_geom.minimum_rotated_rectangle.area) / 2

    # any index that may touch the boundary
    dirty = polygon.boundary.buffer(radius)

    original_set = to_h3(polygon)
    dirty_set = to_h3(dirty)

    result = [
        get_result_struct(hex_i, polygon, dirty_set)
        for hex_i in list(original_set.union(dirty_set))
    ]

    return result
Esempio n. 16
0
def _h3_district_corners(geojson):
    idx = {}
    for feature in geojson["features"]:
        for c in feature["geometry"]["coordinates"][0][0]:
            # resolution=9 is roughly 0.17km end to end
            key = h3.geo_to_h3(c[1], c[0], 9)
            if key not in idx:
                idx[key] = {feature['properties']['DISTRICT']}
            else:
                idx[key].add(feature['properties']['DISTRICT'])
    # if there are more than 2 districts in a set then it's a corner of more than 2 districts
    return {k for k, v in idx.items() if len(v) > 2}
Esempio n. 17
0
def importLine(csvLine, fileName, forceTitle):
    try:
        data = convertCsv2Json(csvLine)
        if data == None:
            return False

        # telに数字以外が入ってたり、11文字より長かったらクリアする
        if "tel" in data and data["tel"]:
            if data["tel"].isdecimal() == False:
                data["tel"] = ""
            elif len(data["tel"]) > 11:
                data["tel"] = ""

        # 電話番号がない場合は住所から取得してみる
        if "tel" not in data or not data["tel"]:
            setTelAndLatLonToData(data)

        # 緯度経度をタイトルと住所から取得する
        if "latlon" not in data or not data["latlon"]:
            setLatLonToData(data)

        # 既に登録済みか確認する
        latlon_ary = data["latlon"].split(",")
        h3index9 = h3.geo_to_h3(float(latlon_ary[0]), float(latlon_ary[1]), 9)
        records = selectItem(data, h3index9)

        if records is None or len(records) == 0:
            insertItem(data, h3index9)

        elif len(records) == 1:
            updateItem(records[0], data, forceTitle)

        elif not data["tel"]:
            message = "CSV IMPORTER : {0}\n Alert : MULTIPLE NO TELEPHONE\n {1}".format(
                fileName, data["title"])
            notifyToSlack(SLACK_WEBHOOK_HAMAMATSU, message)
            return False

        else:
            message = "CSV IMPORTER : {0}\n Alert : MULTIPLE RECORDS({1}) {2}\n {3}\n {4}".format(
                fileName, len(records), data["title"], records[0], records[1])
            notifyToSlack(SLACK_WEBHOOK_HAMAMATSU, message)
            return False

        return True
    except Exception as e:
        logger.exception(e)
        message = "CSV IMPORTER : {0}\n Exception : {1}".format(
            fileName, e.__class__.__name__)
        notifyToSlack(SLACK_WEBHOOK_HAMAMATSU, message)
        raise
Esempio n. 18
0
    def parse_result(r):
        data = r['data']
        lat = round(get_nested_value(data, 9, 2),
                    7)  # 7 digits equals a precision of 1 cm
        lng = round(get_nested_value(data, 9, 3),
                    7)  # 7 digits equals a precision of 1 cm
        # noinspection PyUnresolvedReferences
        h3_index = h3.geo_to_h3(lat, lng, POI_RESOLUTION)
        pb_id = get_nested_value(data, 10)

        return dict(query=r['query'],
                    data=dict(location=dict(lat=lat, lng=lng),
                              h3Index=h3_index,
                              id=pb_id))
Esempio n. 19
0
def test_to_local_ij_error():
    h = h3.geo_to_h3(0, 0, 0)

    # error if we cross a face
    nb = h3.hex_ring(h, k=2)
    with pytest.raises(H3ValueError):
        [h3.experimental_h3_to_local_ij(h, p) for p in nb]

    # should be fine if we do not cross a face
    nb = h3.hex_ring(h, k=1)
    out = {h3.experimental_h3_to_local_ij(h, p) for p in nb}
    expected = {(-1, 0), (0, -1), (0, 1), (1, 0), (1, 1)}

    assert out == expected
Esempio n. 20
0
    def calc_h3d(cls, lat, lon, res):
        """
        Calculate h3 distilled index for given parameters

        :param lat: Latitude
        :type lat: float
        :param lon: Longiture
        :type lon: float
        :param res: resolution (level, depth) of H3 index, 0-15
        :type res: int
        :returns: h3 distilled index
        :rtype: int
        """
        return h3d.h3s_to_h3d(h3.geo_to_h3(lat, lon, res))
Esempio n. 21
0
    def parse_result(r):
        data = r['data'][6]
        name = get_nested_value(data, 11)
        place_id = get_nested_value(data, 78)
        lat = round(get_nested_value(data, 9, 2), 7)  # 7 digits equals a precision of 1 cm
        lng = round(get_nested_value(data, 9, 3), 7)  # 7 digits equals a precision of 1 cm
        # noinspection PyUnresolvedReferences
        h3_index = h3.geo_to_h3(lat, lng, POI_RESOLUTION)
        address = get_nested_value(data, 2)
        timezone = get_nested_value(data, 30)
        categories = [t[0] for t in (get_nested_value(data, 76) or [])]
        opening_hours = parse_opening_hours(get_nested_value(data, 34, 1))
        permanently_closed = get_nested_value(data, 88, 0) == 'CLOSED'
        temporarily_closed = get_nested_value(data, 96, 5, 0, 2) == 'Reopen this place' and not permanently_closed
        inside_of = get_nested_value(data, 93, 0, 0, 0, 1)
        phone = get_nested_value(data, 178, 0, 3)
        website = get_nested_value(data, 7, 0)
        rating_stars = get_nested_value(data, 4, 7)
        rating_number_of_reviews = get_nested_value(data, 4, 8)
        price_level = get_nested_value(data, 4, 2)
        popularity_data = get_nested_value(data, 84, 0)
        spending_time = parse_spending_time_data(get_nested_value(data, 117, 0))
        popularity, waiting_time = None, None

        if popularity_data:
            popularity, waiting_time = parse_popularity_data(popularity_data, timezone)

        return dict(
            id=r['id'],
            data=dict(
                name=name,
                placeID=place_id,
                location=dict(lat=lat, lng=lng),
                h3Index=h3_index,
                address=address,
                timezone=timezone,
                categories=categories,
                temporarilyClosed=temporarily_closed,
                permanentlyClosed=permanently_closed,
                insideOf=inside_of,
                contact=dict(phone=phone, website=website),
                openingHours=opening_hours,
                rating=dict(stars=rating_stars, numberOfReviews=rating_number_of_reviews),
                priceLevel=len(price_level) if price_level else None,
                popularity=popularity,
                waitingTime=waiting_time,
                spendingTime=spending_time
            )
        )
Esempio n. 22
0
def test_from_local_ij_error():
    h = h3.geo_to_h3(0, 0, 0)

    baddies = [(1, -1), (-1, 1), (-1, -1)]
    for i, j in baddies:
        with pytest.raises(H3ValueError):
            h3.experimental_local_ij_to_h3(h, i, j)

    # inverting output should give good data
    nb = h3.hex_ring(h, k=1)
    goodies = {h3.experimental_h3_to_local_ij(h, p) for p in nb}

    out = {h3.experimental_local_ij_to_h3(h, i, j) for i, j in goodies}

    assert out == nb
 def __create_h3_from_lat_lon(self, lat, lon):
     """
     Get h3index from latitude and longitude
     :param lat:
     :param lon:
     :return:
     """
     try:
         return h3.geo_to_h3(float(lat), float(lon), RES)
     except ValueError:
         print("Wrong latitude or longitude values\n")
         return None
     except Exception as e:
         print(f"Error: {e}")
         return None
def h3_polyfill_extended(geometry, resolution):
    (cx, cy) = polygon.centroid.coords.xy  # get centroid location
    centroid_ind = h3.geo_to_h3(
        cx[0], cy[0], resolution)  # get h3 index containing the centroid
    centroid_geom = shapely.geometry.Polygon(
        h3.h3_to_geo_boundary(centroid_ind))  # get centroid index geometry
    radius = math.sqrt(
        centroid_geom.minimum_rotated_rectangle.area
    ) / 2  # find the radius of (pseudo) minimal enclosing circle (via side of the rotated enclosing square)
    geom_extended = geometry.buffer(
        distance=radius, resolution=1
    )  # buffer the original geometry by the radius of minimum enclosing cicle
    geo_json_geom = shapely.geometry.mapping(geom_extended)
    indices = h3.polyfill_geojson(geo_json_geom, resolution)  # get the indices
    return indices
Esempio n. 25
0
    def compute_reward_scale(self, lat: float, lng: float):
        """Generate the reward scale for a given location."""
        hex_id = h3.geo_to_h3(lat, lng, RES_MAX)
        if hex_id not in self.hex_dict[RES_MAX]:
            raise Exception(
                "Cannot compute reward scale. Invalid starting hex.")
        current_hex = self.hex_dict[RES_MAX][hex_id]
        reward_scale = 1
        while current_hex.res >= RES_MIN:
            parent = self[h3.h3_to_parent(current_hex.hex_id,
                                          current_hex.res - 1)]
            reward_scale = reward_scale * (parent.clipped_density /
                                           parent.unclipped_density)
            current_hex = parent

        return reward_scale
def load_incidents(aperture_size=None, df_freq=None):
    if df_freq is None:
        df = pd.read_pickle('resources/tdot_testing_incidents.pk')
        df_freq = df.groupby([
            'unit_segment_id', 'GPS Coordinate Latitude',
            'GPS Coordinate Longitude', 'timestamp'
        ]).size().reset_index()
        df_freq.set_axis(['segment_id', 'lat', 'lng', 'timestamp', 'count'],
                         axis=1,
                         inplace=True)
        df_freq.loc[:, 'segment_id'] = df_freq.segment_id.apply(int)
        df_freq.loc[:, 'time'] = pd.to_datetime(df_freq['timestamp'], unit='s')
    if aperture_size is not None:
        aperture_size = int(aperture_size)
        df_freq.loc[:, 'region'] = df_freq.apply(
            lambda x: h3.geo_to_h3(x.lat, x.lng, aperture_size), 1)
    return df_freq
Esempio n. 27
0
    def filter_h3d_around(cls, lat, lon, res, k_distance=1, queryset=None):
        """
        Filter all instances with the same h3 cell, or in cells around it

        :param lat: latitude
        :param lon: longitude
        :param res: resolution (level, depth) of the index where to find
        :param k_distance: max distance in hexagon cells from the cell containing the start point
            0 for the containing cell only,
            1 for the containing cell and cells immediately around,
            etc.
        :param queryset: the queryset to search in, None means cls.objects.all()
        """
        cells = h3.compact(h3.k_ring(h3.geo_to_h3(lat, lon, res), k_distance))
        d_cells = [h3d.h3s_to_h3d(c) for c in cells]
        filters = [models.Q(h3d__range=h3d.h3d_range(c)) for c in d_cells]
        if not queryset:
            queryset = cls.objects.all()
        return queryset.filter(functools.reduce(operator.or_, filters))
Esempio n. 28
0
def _lower_resolution(list_of_coords, h3_corners, reduction_factor):
    if reduction_factor > 9:
        raise Exception("max reduction factor is 9")

    result = []

    # The polygon's first and last coordinate must be the same in order to enclose the area so we always append the first coordinate here
    result.append(list_of_coords[0])

    for coord in list_of_coords:
        if int(str(coord[0])[-1]) < reduction_factor and h3.geo_to_h3(
                coord[1], coord[0], 9) not in h3_corners:
            continue
        result.append(coord)

        # ensure that we always append the last coordinate to enclose the area
    if int(str(list_of_coords[-1][0])[-1]) < reduction_factor:
        result.append(list_of_coords[-1])

    return result
Esempio n. 29
0
def select_reliable_fire(year):
    """Load the fire data of a single year and reserve rows with confidence higher than 0.8 .
    Calculate the h3 hexagon where the remaining fire occurred based on the latitude and longitude,
    and return it after merging."""
    raw_file = input_dir + "modis_" + year + "_Australia.csv"
    df_raw = pd.read_csv(raw_file, sep=',')
    df_sel = df_raw[df_raw["confidence"] >= 80].reset_index(drop=True)
    df_sel = df_sel[["latitude", "longitude"]]
    df_sel["hex_id"] = df_sel.apply(
        lambda row: h3.geo_to_h3(
            lat=row["latitude"],
            lng=row["longitude"],
            resolution=7),
        axis=1)
    print("A total of {} fire data are counted".format(df_sel.shape[0]))
    df_count = pd.DataFrame(df_sel["hex_id"].value_counts())
    df_count = df_count.reset_index()
    fire_column = "fire_" + year
    df_count.columns = ["hex_id", fire_column]
    return df_count
Esempio n. 30
0
def h3_tile_by_dim(lon, lat, bdim=BASE_DIM, asc=True, more=False):

    osmproj = pyproj.Proj("epsg:3857")

    resolutions = range(H3_MAX_ZOOM) if asc else reversed(range(H3_MAX_ZOOM))
    for resolution in resolutions:
        tile = h3.geo_to_h3(lat, lon, resolution)
        polygon = h3.h3_to_geo_boundary(tile)

        x1, y1 = osmproj(*polygon[0])
        x2, y2 = osmproj(*polygon[1])

        dist = Point(x1, y1).distance(Point(x2, y2))

        if (asc and dist < bdim) or (not asc and dist > bdim):
            break

    return tile if not more else (
        tile,
        resolution,
    )