def extend_dataset(dataset: h5py.Dataset, data: Union[np.array, List]):
        if type(data) is list:
            data = np.array(data)

        if data.shape[0] == 0:
            return

        dataset.resize((dataset.shape[0] + data.shape[0]), axis=0)
        dataset[-data.shape[0]:] = data
Esempio n. 2
0
def extend_dataset(dataset: h5py.Dataset, data: np.ndarray,) -> h5py.Dataset:
    """Ectend a dataset in the input HDF5 group. 
    Used to update the images in a split.
    """
    shape = dataset.shape
    newshape = (dataset.shape[0] + data.shape[0], *dataset.shape[1:])
    dataset.resize(newshape)
    dataset[shape[0] :] = data
    return dataset
 def append_buffer_to_dataset(dset: h5py.Dataset, buffer: ListBuffer):
     """Append values to resizable h5py dataset."""
     if len(buffer):  # Buffer is not empty
         logging.info("")
         values = np.array(buffer)
         new_shape = (buffer.end,) + values.shape[1:]
         dset.resize(new_shape)
         dset[buffer.start:] = values
     else:
         logging.warning("Buffer is empty.")
def maybe_resize(examples: h5py.Dataset, index: int, resize_chunk: int):
    if index >= examples.shape[0]:
        current_shape = list(examples.shape)
        current_shape[0] += resize_chunk
        examples.resize(current_shape)
Esempio n. 5
0
def _resize_prop_dset(dset: h5py.Dataset) -> None:
    """Ensure that **dset** is as long as its dimensional scale."""
    scale = dset.dims[0][0]
    n = len(scale)
    if n > len(dset):
        dset.resize(n, axis=0)