Esempio n. 1
0
 def update_frame(frame, format=1):
     if format == 1:
         t, vxm, vym, num = frame
         phi = np.sqrt(vxm**2 + vym**2)
     elif format == 2:
         t, phi, num = frame
     rho = num.astype(float)
     rho_s = gaussian_filter(rho, sigma=[5, 1])
     xh1, rho_h = half_peak.find_interface(rho, sigma=[5, 1])
     xh2, rho_h = half_peak.find_interface(rho, sigma=[10, 1])
     xh3, rho_h = half_peak.find_interface(rho, sigma=[15, 1])
     xh4, rho_h = half_peak.find_interface(rho, sigma=[20, 1])
     xh1 = half_rho.untangle(xh1, Lx)
     xh2 = half_rho.untangle(xh2, Lx)
     xh3 = half_rho.untangle(xh3, Lx)
     xh4 = half_rho.untangle(xh4, Lx)
     w1 = np.var(xh1)
     w2 = np.var(xh2)
     w3 = np.var(xh3)
     w4 = np.var(xh4)
     dx = np.round(100 - np.mean(xh1)).astype(int)
     xh1 += dx
     xh2 += dx
     xh3 += dx
     rho_s = np.roll(rho_s, dx, axis=1)
     im.set_data(rho_s.T)
     line1.set_data(yh, xh1)
     line3.set_data(yh, xh3)
     title.set_text(title_template % (eta, eps, Lx, Ly, N, t, phi, w1, w3))
     writer.grab_frame()
     print("t=", t)
     f.write("%d\t%f\t%f\t%f\t%f\t%f\n" % (t, phi, w1, w2, w3, w4))
Esempio n. 2
0
def handle_raw_snap():
    import load_snap
    from half_rho import untangle
    import snake
    import half_peak
    os.chdir(r"D:\tmp")
    Lx = 180
    Ly = 1000
    sigma = [5, 1]
    r = np.round(np.logspace(2, 18, 17, base=np.sqrt(2))).astype(int)
    G1 = np.zeros(r.size)
    G2 = np.zeros(r.size)
    count = 0
    snap = load_snap.RawSnap(r"so_%g_%g_%d_%d_%d_%d_%d.bin" %
                             (0.35, 0, Lx, Ly, Lx * Ly, 2000, 1234))
    n = snap.get_num_frames()
    print("n=", n)
    t_beg = 250
    t_end = 300
    for i, frame in enumerate(snap.gene_frames(t_beg, t_end)):
        x, y, theta = frame
        rho = load_snap.coarse_grain2(x,
                                      y,
                                      theta,
                                      Lx=Lx,
                                      Ly=Ly,
                                      ncols=Lx,
                                      nrows=Ly).astype(float)
        xh1, rho_h = half_peak.find_interface(rho, sigma=sigma)
        rho_s = gaussian_filter(rho, sigma=sigma)
        xh2, yh2 = snake.find_interface(rho_s,
                                        0.5,
                                        0.1,
                                        0.25,
                                        400,
                                        rho_h,
                                        dx=5)
        xh1 = untangle(xh1, Lx)
        xh2 = untangle(xh2, Lx)
        G1 += cal_G(xh1, r)
        G2 += cal_G(xh2, r)
        count += 1
        print("i = ", i)
    G1 /= count
    G2 /= count
    plt.plot(r, G1)
    plt.plot(r, G2)
    plt.xscale("log")
    plt.yscale("log")
    plt.show()
    plt.close()
    for i in range(G1.size):
        print(r[i], G1[i], G2[i])
    print(count)
Esempio n. 3
0
def show_separated_snaps(Lx,
                         Ly,
                         seed,
                         t_beg,
                         t_end,
                         dt=None,
                         eta=0.35,
                         eps=0,
                         rho0=1,
                         transpos=False,
                         sigma=[5, 1]):
    from half_peak import find_interface
    from half_rho import untangle
    if dt is None:
        dt = t_beg
    t = t_beg
    while t <= t_end:
        file = r's_%g_%g_%g_%d_%d_%d_%08d.bin' % (eta, eps, rho0, Lx, Ly, seed,
                                                  t)
        snap = RawSnap(file)
        for frame in snap.gene_frames():
            try:
                x, y, theta = frame
                phi = np.sqrt(
                    np.mean(np.cos(theta))**2 + np.mean(np.sin(theta))**2)
                rho = coarse_grain2(x, y, theta, Lx=Lx, Ly=Ly).astype(float)
                yh = np.linspace(0.5, Ly - 0.5, Ly)
                xh, rho_h = find_interface(rho, sigma=sigma)
                w = np.var(untangle(xh, Lx))
                print("t=%d, phi=%f, w=%f" % (t, phi, w))
                plt.subplot(121)
                if transpos:
                    x, y = y, x
                    xh, yh = yh, xh
                    plt.xlim(0, Ly)
                    plt.ylim(0, Lx)
                else:
                    plt.xlim(0, Lx)
                    plt.ylim(0, Ly)
                plt.scatter(x, y, s=1, c=theta, cmap="hsv")
                plt.plot(xh, yh)
                plt.title(r"$t=%d, \phi=%g, w^2=%g$" % (t, phi, w))
                plt.colorbar()
                plt.subplot(122)
                plt.plot(rho.mean(axis=0))
                plt.show()
                plt.close()
            except:
                print("t=%d, Error" % t)
        t += dt
Esempio n. 4
0
 def update_frame():
     for i in range(nfile):
         t, vxm, vym, num = next(frames[i])
         xh, rho_h = half_peak.find_interface(num.astype(float),
                                              sigma=[20, 1])
         xh = half_rho.untangle(xh, Lx[i])
         w = np.var(xh)
         dx = 100 - np.mean(xh)
         xh += dx
         phi = np.sqrt(vxm**2 + vym**2)
         line[i].set_data(yh[i], xh)
         line[i].set_label(r"$L_y=%d, w^2=%.4f, \phi=%.4f$" %
                           (Lx[i], w, phi))
     title.set_text(r"$\eta=%g, \epsilon=%g, L_x=%d, t=%d$" %
                    (eta[0], eps[0], Ly[0], t))
     plt.legend()
     writer.grab_frame()
     print("t=", t)
Esempio n. 5
0
def cal_spectrum(Lx, Ly, sigma_y=10, show=False, out=False, eps=0, dt=1):
    file = r"so_0.35_%g_%d_%d_%d_2000_1234.bin" % (eps, Lx, Ly, Lx * Ly)
    snap = load_snap.RawSnap(file)
    if not isinstance(sigma_y, list):
        nrows = 1
        sigma_y = [sigma_y]
    else:
        nrows = len(sigma_y)
    ncols = Ly // 2 + 1
    q = np.arange(ncols) / Ly
    spectrum = np.zeros((nrows, ncols))
    count = np.zeros(nrows, int)
    for frame in snap.gene_frames(beg_idx=300, interval=dt):
        x, y, theta = frame
        rho = load_snap.coarse_grain2(x, y, theta, Lx=Lx, Ly=Ly).astype(float)
        for i, sy in enumerate(sigma_y):
            try:
                xh, rho_h = find_interface(rho, sigma=[sy, 1])
                xh = untangle(xh, Lx)
                h = xh - np.mean(xh)
                hq = np.fft.rfft(h) / Ly
                A2 = np.abs(hq)**2
                spectrum[i] += A2
                count[i] += 1
            except:
                pass
        print("t=%d" % (dt * count[-1]))
    for i in range(nrows):
        spectrum[i] /= count[i]
    if show:
        plt.loglog(q, spectrum)
        plt.show()
        plt.close()
    if out:
        outfile = "hq_%g_%d_%d.dat" % (eps, Lx, Ly)
        with open(outfile, "w") as f:
            for i in range(q.size):
                line = "%f" % (q[i]**2)
                for j in range(nrows):
                    line += "\t%.8f" % (spectrum[j, i])
                line += "\n"
                f.write(line)
Esempio n. 6
0
def time_ave(Lx, Ly, sigma_y=100, show=False, out=False, eps=0, dt=1):
    file = r"so_0.35_%g_%d_%d_%d_2000_1234.bin" % (eps, Lx, Ly, Lx * Ly)
    snap = load_snap.RawSnap(file)
    if not isinstance(sigma_y, list):
        nrows = 1
        sigma_y = [sigma_y]
    else:
        nrows = len(sigma_y)
    ncols = Lx
    rho_mean = np.zeros((nrows, ncols))
    count = np.zeros(nrows, int)
    x0 = np.arange(Lx) + 0.5
    for frame in snap.gene_frames(beg_idx=300, interval=dt):
        x, y, theta = frame
        rho = load_snap.coarse_grain2(x, y, theta, Lx=Lx, Ly=Ly).astype(float)
        rho_real = load_snap.coarse_grain(x, y, Lx=Lx, Ly=Ly)
        for i, sy in enumerate(sigma_y):
            try:
                xh, rho_h = find_interface(rho, sigma=[sy, 1])
                rho_mean[i] += ave_one_frame(rho_real, xh)
                count[i] += 1
            except:
                pass
        print("t=%d" % (dt * count[-1]))
    for i in range(nrows):
        rho_mean[i] /= count[i]
    if show:
        for i in range(nrows):
            plt.plot(x0, rho_mean[i])
        plt.show()
        plt.close()
    if out:
        outfile = "avePeak_%g_%d_%d.dat" % (eps, Lx, Ly)
        with open(outfile, "w") as f:
            for i in range(ncols):
                line = "%f" % (x0[i])
                for j in range(nrows):
                    line += "\t%.8f" % (rho_mean[j, i])
                line += "\n"
                f.write(line)
Esempio n. 7
0
def handle_raw_snap(file):
    import half_peak
    import spatial_corr
    from half_rho import untangle

    path, file = file.split("/")
    os.chdir(path)
    str_list = file.split("_")
    Lx = int(str_list[3])
    Ly = int(str_list[4])
    snap = RawSnap(file)
    outfile = file.replace(".bin", ".dat")
    f = open(outfile, "w")
    corr2D = spatial_corr.Corr2D(file, 1)
    for i, frame in enumerate(snap.gene_frames()):
        x, y, theta = frame
        vxm = np.mean(np.cos(theta))
        vym = np.mean(np.sin(theta))
        phi = np.sqrt(vxm**2 + vym**2)
        rho = coarse_grain2(x, y, theta, Lx=Lx, Ly=Ly, ncols=Lx,
                            nrows=Ly).astype(float)
        line = "%d\t%f" % (i, phi)
        for sigma_y in [1, 5, 10, 15, 20]:
            try:
                xh, rho_h = half_peak.find_interface(rho, sigma=[sigma_y, 1])
                xh = untangle(xh, Lx)
                w = np.var(xh)
                line += "\t%f" % (w)
            except:
                print("Error when sigma_y = %d and i = %d" % (sigma_y, i))
                line += "\t"
        line += "\n"
        f.write(line)
        if i >= 300:
            rho, vx, vy = coarse_grain(x, y, theta, Lx, Ly)
            corr2D.accu(vx, vy, rho)
    f.close()
    corr2D.outfile()
Esempio n. 8
0
 width1 = []
 width2 = []
 debug = True
 t_beg = 0
 t_end = None
 for i, frame in enumerate(snap.gene_frames(t_beg, t_end, 100)):
     x, y, theta = frame
     rho = load_snap.coarse_grain2(x,
                                   y,
                                   theta,
                                   Lx=Lx,
                                   Ly=Ly,
                                   ncols=Lx,
                                   nrows=Ly).astype(float)
     xh, rho_h = half_rho.find_interface(rho, sigma=[1, 1])
     xh2, rho_h2 = half_peak.find_interface(rho, sigma=[1, 1])
     rho_s = gaussian_filter(rho, sigma=[1, 1])
     xh3, yh3 = find_interface(rho_s, 0.5, 0.1, 0.25, 500, rho_h2, dx=5)
     yh = np.linspace(0.5, Ly - 0.5, Ly)
     if debug:
         # plt.scatter(y, x, s=0.5, c=theta, cmap="hsv")
         plt.plot(y, x, "o", ms="1")
         rho_s[rho_s > 5] = 5
         # plt.imshow(rho_s.T, interpolation="none", origin="lower")
         xh = untangle(xh, Lx)
         xh2 = untangle(xh2, Lx)
         xh3 = untangle(xh3, Lx)
         plt.plot(yh, xh, "g")
         plt.plot(yh, xh2, "r--")
         plt.plot(yh3, xh3, "k:")
         plt.show()
Esempio n. 9
0
    os.chdir(path)
    outfile = file.replace(".bin", "_skew.dat")
    f = open(outfile, "w")
    snap = load_snap.CoarseGrainSnap(file)
    tot_frames = snap.get_num_frames()
    ts = np.zeros(tot_frames, int)
    h10 = np.zeros((tot_frames, Ly))
    h15 = np.zeros((tot_frames, Ly))

    frames = snap.gene_frames()
    for i, frame in enumerate(frames):
        t, vxm, vym, num = frame
        ts[i] = t
        line = "%d" % t
        rho = num.astype(float)
        xh1, rho_h = half_peak.find_interface(rho, sigma=[10, 1])
        xh1 = half_rho.untangle(xh1, Lx)
        h10[i] = xh1
        gamma1 = skew(xh1)
        gamma2 = kurt(xh1)
        line += "\t%f\t%f" % (gamma1, gamma2)
        xh1, rho_h = half_peak.find_interface(rho, sigma=[15, 1])
        xh1 = half_rho.untangle(xh1, Lx)
        h15[i] = xh1
        gamma1 = skew(xh1)
        gamma2 = kurt(xh1)
        line += "\t%f\t%f" % (gamma1, gamma2)

        try:
            xh2 = isoline(rho, Lx, Ly, Lx, Ly // 20)
            gamma1 = skew(xh2)
Esempio n. 10
0
 def show(self,
          i_beg=0,
          i_end=None,
          di=1,
          lx=1,
          ly=1,
          transpos=True,
          sigma=[5, 1],
          output=True,
          show=True):
     import half_rho
     import half_peak
     if output:
         f = open(self.file.replace(".bin", "_%d.dat" % (sigma[0])), "w")
     for i, frame in enumerate(self.gene_frames(i_beg, i_end, di)):
         t, vxm, vym, num = frame
         rho = num.astype(np.float32)
         yh = np.linspace(0.5, self.nrows - 0.5, self.nrows)
         # xh1, rho_h1 = half_rho.find_interface(rho, sigma=sigma)
         xh2, rho_h2 = half_peak.find_interface(rho, sigma=sigma)
         # xh1 = half_rho.untangle(xh1, self.ncols)
         xh2 = half_rho.untangle(xh2, self.ncols)
         # w1 = np.var(xh1)
         w2 = np.var(xh2)
         if show:
             if ly > 1:
                 rho = np.array([
                     np.mean(num[i * ly:(i + 1) * ly], axis=0)
                     for i in range(self.nrows // ly)
                 ])
             if lx > 1:
                 rho = np.array([
                     np.mean(rho[:, i * lx:(i + 1) * lx], axis=1)
                     for i in range(self.ncols // lx)
                 ])
             rho = gaussian_filter(rho, sigma=[5, 1])
             if transpos:
                 rho = rho.T
                 box = [0, self.nrows, 0, self.ncols]
                 plt.figure(figsize=(14, 3))
                 plt.plot(yh, xh2, "r")
                 plt.xlabel(r"$y$")
                 plt.ylabel(r"$x$")
             else:
                 box = [0, self.ncols, 0, self.nrows]
                 plt.figure(figsize=(4, 12))
                 plt.plot(xh2, yh, "r")
                 plt.xlabel(r"$x$")
                 plt.ylabel(r"$y$")
             rho[rho > 4] = 4
             plt.imshow(rho,
                        origin="lower",
                        interpolation="none",
                        extent=box,
                        aspect="auto")
             plt.title(r"$t=%d, \phi=%g, w^2=%g$" %
                       (t, np.sqrt(vxm**2 + vym**2), w2))
             plt.tight_layout()
             plt.show()
             plt.close()
         print(t, np.sqrt(vxm**2 + vym**2), w2)
         if output:
             f.write("%d\t%f\t%f\n" % (t, np.sqrt(vxm**2 + vym**2), w2))
     if output:
         f.close()