Esempio n. 1
0
    def __init_platform__(self, module_path, window_size, visible=False):
        view_mat = axangle2mat([1, 0, 0],
                               1 * np.pi)  # align different coordinate systems
        hand_mesh = HandMesh(module_path)
        mesh = o3d.geometry.TriangleMesh()
        mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)

        #transfering meter to mm
        mano_mesh = np.matmul(view_mat, hand_mesh.verts.T).T * 1000
        mesh.vertices = \
            o3d.utility.Vector3dVector(mano_mesh)
        mesh.compute_vertex_normals()
        viewer = o3d.visualization.Visualizer()
        viewer.create_window(width=window_size + 1,
                             height=window_size + 1,
                             window_name='Minimal Hand - output',
                             visible=visible)
        viewer.add_geometry(mesh)

        self.hand_mesh = hand_mesh
        self.mesh = mesh
        self.view_mat = view_mat
        return viewer, hand_mesh, mesh, view_mat
Esempio n. 2
0
def live_application(capture, output_dirpath):
    """
  Launch an application that reads from a webcam and estimates hand pose at
  real-time.

  The captured hand must be the right hand, but will be flipped internally
  and rendered.

  Parameters
  ----------
  capture : object
    An object from `capture.py` to read capture stream from.
  """
    ############ output visualization ############
    view_mat = axangle2mat([1, 0, 0],
                           np.pi)  # align different coordinate systems
    window_size = 1080

    hand_mesh = HandMesh(config.HAND_MESH_MODEL_PATH)
    mesh = o3d.geometry.TriangleMesh()
    mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
    mesh.vertices = \
      o3d.utility.Vector3dVector(np.matmul(view_mat, hand_mesh.verts.T).T * 1000)
    mesh.compute_vertex_normals()

    viewer = o3d.visualization.Visualizer()
    viewer.create_window(width=window_size + 1,
                         height=window_size + 1,
                         window_name='Minimal Hand - output')
    viewer.add_geometry(mesh)

    view_control = viewer.get_view_control()
    cam_params = view_control.convert_to_pinhole_camera_parameters()
    extrinsic = cam_params.extrinsic.copy()
    extrinsic[0:3, 3] = 0
    cam_params.extrinsic = extrinsic
    cam_params.intrinsic.set_intrinsics(window_size + 1, window_size + 1,
                                        config.CAM_FX, config.CAM_FY,
                                        window_size // 2, window_size // 2)
    view_control.convert_from_pinhole_camera_parameters(cam_params)
    view_control.set_constant_z_far(1000)

    render_option = viewer.get_render_option()
    render_option.load_from_json('./render_option.json')
    viewer.update_renderer()

    ############ input visualization ############
    pygame.init()
    display = pygame.display.set_mode((window_size, window_size))
    pygame.display.set_caption('Minimal Hand - input')

    ############ misc ############
    mesh_smoother = OneEuroFilter(4.0, 0.0)
    clock = pygame.time.Clock()
    model = ModelPipeline()

    frame_index = 0
    mano_params = []
    while True:
        frame_large = capture.read()
        if frame_large is None:
            print(f'none frame {frame_index}')
            # if frame_index == 0:
            #   continue
            break

        # if frame_large.shape[0] > frame_large.shape[1]:
        #   margin = int((frame_large.shape[0] - frame_large.shape[1]) / 2)
        #   frame_large = frame_large[margin:-margin]
        # else:
        #   margin = int((frame_large.shape[1] - frame_large.shape[0]) / 2)
        #   frame_large = frame_large[:, margin:-margin]

        frame = imresize(frame_large, (128, 128))

        _, theta_mpii = model.process(frame)
        theta_mano = mpii_to_mano(theta_mpii)

        mano_params.append(deepcopy(theta_mano.tolist()))

        osp.join(output_dirpath, "%06d.jpg" % frame_index)

        v = hand_mesh.set_abs_quat(theta_mano)
        v *= 2  # for better visualization
        v = v * 1000 + np.array([0, 0, 400])
        v = mesh_smoother.process(v)
        mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
        mesh.vertices = o3d.utility.Vector3dVector(np.matmul(view_mat, v.T).T)
        mesh.paint_uniform_color(config.HAND_COLOR)
        mesh.compute_triangle_normals()
        mesh.compute_vertex_normals()
        viewer.update_geometry()
        viewer.poll_events()
        viewer.capture_screen_image(
            osp.join(output_dirpath, "%06d.jpg" % frame_index))

        display.blit(
            pygame.surfarray.make_surface(
                np.transpose(imresize(frame_large, (window_size, window_size)),
                             (1, 0, 2))), (0, 0))
        pygame.display.update()

        # if keyboard.is_pressed("esc"):
        #   break

        clock.tick(30)
        frame_index += 1
    with open(osp.join(output_dirpath, f'{capture.side}.pickle'), 'w') as f:
        json.dump(mano_params, f)
Esempio n. 3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--pid', required=True)
    args = parser.parse_args()

    print(f'{"=" * 20} processing {args.pid} {"=" * 20}')

    kinect_unpacked_dp = "/home/renat/Desktop/offline_processor2/align"
    kinect_unpacked_dp_bt = "/home/renat/Desktop/offline_processor2/align"
    output_dirpath = "/home/renat/Desktop/minimal-hand"
    sn = '000589692912'

    apud = AzurePeopleUnpackedDataset(osp.join(kinect_unpacked_dp, args.pid),
                                      serial_numbers=[sn])
    apud.dataset_dirpath = osp.join(kinect_unpacked_dp_bt, args.pid)
    apud.read_bt()
    apud.dataset_dirpath = osp.join(kinect_unpacked_dp, args.pid)
    apud.parse_cam_params()

    color_dirpath = osp.join(apud.dataset_dirpath, sn, 'color_undistorted')
    fns_dict = dict()
    for fn in os.listdir(color_dirpath):
        fn_no_ext = osp.splitext(fn)[0]
        try:
            frame_index = int(fn_no_ext)
            fns_dict[frame_index] = fn
        except:
            pass

    processor = Processor()
    result = defaultdict(dict)
    done = 0

    view_mat = axangle2mat([1, 0, 0],
                           np.pi)  # align different coordinate systems
    window_size = 1080

    hand_mesh = HandMesh(config.HAND_MESH_MODEL_PATH)
    mesh = o3d.geometry.TriangleMesh()
    mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
    mesh.vertices = \
        o3d.utility.Vector3dVector(np.matmul(view_mat, hand_mesh.verts.T).T * 1000)
    mesh.compute_vertex_normals()

    viewer = o3d.visualization.Visualizer()
    viewer.create_window(width=window_size + 1,
                         height=window_size + 1,
                         window_name='Minimal Hand - output')
    viewer.add_geometry(mesh)

    view_control = viewer.get_view_control()
    cam_params = view_control.convert_to_pinhole_camera_parameters()
    extrinsic = cam_params.extrinsic.copy()
    extrinsic[0:3, 3] = 0
    cam_params.extrinsic = extrinsic
    cam_params.intrinsic.set_intrinsics(window_size + 1, window_size + 1,
                                        config.CAM_FX, config.CAM_FY,
                                        window_size // 2, window_size // 2)
    view_control.convert_from_pinhole_camera_parameters(cam_params)
    view_control.set_constant_z_far(1000)

    render_option = viewer.get_render_option()
    render_option.load_from_json('./render_option.json')
    viewer.update_renderer()

    ############ input visualization ############
    pygame.init()
    display = pygame.display.set_mode((window_size, window_size))
    pygame.display.set_caption('Minimal Hand - input')

    ############ misc ############
    mesh_smoother = OneEuroFilter(4.0, 0.0)
    clock = pygame.time.Clock()

    start = time.time()
    for frame_index in sorted(fns_dict.keys())[1000:]:
        img_path = osp.join(color_dirpath, fns_dict[frame_index])
        color_undistorted = io.imread(img_path)[:, :, :3]

        try:
            kinect_joints = apud.get_bt_joints(frame_index, sn)
        except:
            print(f'no joints for frame {frame_index}')
            continue
        kinect_joints = np.array(kinect_joints) / 1000
        for hand_index, side in [
            [15, 'right'],
                # [8, 'left'],
        ]:
            p = kinect_joints[hand_index]
            p_cube = get_cube(p)
            p_cube_proj = depth3d_to_color2d(p_cube, apud.cam_params[sn])
            bbox = get_bbox(p_cube_proj)
            print(bbox)

            # crop_img = simple_crop(color_undistorted, bbox)
            crop_img = pil_crop(color_undistorted, bbox)

            print(crop_img.shape)

            theta_mano, frame_large = processor.process(crop_img, side)
            print(frame_large.shape)

            v = hand_mesh.set_abs_quat(theta_mano)
            v *= 2  # for better visualization
            v = v * 1000 + np.array([0, 0, 400])
            v = mesh_smoother.process(v)
            mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
            mesh.vertices = o3d.utility.Vector3dVector(
                np.matmul(view_mat, v.T).T)
            mesh.paint_uniform_color(config.HAND_COLOR)
            mesh.compute_triangle_normals()
            mesh.compute_vertex_normals()
            viewer.update_geometry()
            viewer.poll_events()
            # viewer.capture_screen_image(osp.join(output_dirpath, "%06d.jpg" % i))

            display.blit(
                pygame.surfarray.make_surface(
                    np.transpose(
                        imresize(crop_img, (window_size, window_size)),
                        (1, 0, 2))), (0, 0))
            pygame.display.update()

            # if keyboard.is_pressed("esc"):
            #   break

            clock.tick(30)

            result[frame_index][side] = theta_mano
        done += 1
        if done % 100 == 0:
            print(f'done {done}, {time.time() - start}')
    with open(osp.join(output_dirpath, f'{args.pid}.pickle'), 'wb') as f:
        pickle.dump(result, f)
Esempio n. 4
0
def live_application(capture):
    """
    Launch an application that reads from a webcam and estimates hand pose at
    real-time.

    The captured hand must be the right hand, but will be flipped internally
    and rendered.

    Parameters
    ----------
    capture : object
      An object from `capture.py` to read capture stream from.
    """
    ############ output visualization ############
    view_mat = axangle2mat([1, 0, 0],
                           np.pi)  # align different coordinate systems
    window_size = 1080

    hand_mesh = HandMesh(config.HAND_MESH_MODEL_PATH)
    hand_mri = HandMRI()
    tnerf = TinyNerf()

    mesh = o3d.geometry.TriangleMesh()
    mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
    mesh.vertices = \
        o3d.utility.Vector3dVector(np.matmul(view_mat, hand_mesh.verts.T).T * 1000)
    mesh.compute_vertex_normals()

    bone_pcl = o3d.geometry.PointCloud()
    mri_pcl = o3d.geometry.PointCloud()

    # viewer = o3d.visualization.Visualizer()
    # viewer.create_window(
    #     width=window_size + 1, height=window_size + 1,
    #     window_name='Minimal Hand - output'
    # )
    # viewer.add_geometry(mesh)
    #
    # view_control = viewer.get_view_control()
    # cam_params = view_control.convert_to_pinhole_camera_parameters()
    # extrinsic = cam_params.extrinsic.copy()
    # extrinsic[0:3, 3] = 0
    # cam_params.extrinsic = extrinsic
    # cam_params.intrinsic.set_intrinsics(
    #     window_size + 1, window_size + 1, config.CAM_FX, config.CAM_FY,
    #     window_size // 2, window_size // 2
    # )
    # view_control.convert_from_pinhole_camera_parameters(cam_params)
    # view_control.set_constant_z_far(1000)

    # render_option = viewer.get_render_option()
    # render_option.load_from_json('./render_option.json')
    # viewer.update_renderer()

    ############ input visualization ############
    # pygame.init()
    # display = pygame.display.set_mode((window_size, window_size))
    # pygame.display.set_caption('Minimal Hand - input')

    ############ misc ############
    mesh_smoother = OneEuroFilter(4.0, 0.0)
    clock = pygame.time.Clock()
    # model = ModelPipeline()
    frameid = 0
    while True:
        frame_large = capture.read()
        if frame_large is None:
            break

        frameid += 1
        if frameid % 2 != 0:
            continue
        print(frameid)
        if os.path.exists(
                "../video/ev_20200708_151823/{:06d}_mri_vol.nii.gz".format(
                    frameid)):
            continue
        # if frameid != 68:
        #     continue

        if frame_large.shape[0] > frame_large.shape[1]:
            margin = int((frame_large.shape[0] - frame_large.shape[1]) / 2)
            frame_large = frame_large[margin:-margin]
        else:
            margin = int((frame_large.shape[1] - frame_large.shape[0]) / 2)
            frame_large = frame_large[:, margin:-margin]
        frame_large = np.flip(frame_large, axis=1).copy()
        frame = imresize(frame_large, (128, 128))
        # _, theta_mpii = model.process(frame)
        # theta_mano = mpii_to_mano(theta_mpii)
        # np.save("../video/ev_20200708_151823/{:06d}_abs_quat.npy".format(frameid), theta_mano)
        theta_mano = np.load(
            "../video/ev_20200708_151823/{:06d}_abs_quat.npy".format(frameid))
        v, j = hand_mesh.set_abs_quat(theta_mano)

        # generate mri
        print("=======generate mri")
        pts_vol = hand_mri.mano_to_vol(v, spacing=mri_spacing)
        vol_size = pts_vol.shape[:3]
        # np.save("../video/ev_20200708_151823/{:06d}_mri_vol_q_size.npy".format(frameid), vol_size)

        # transfer weights and back to mano canonical
        print("=======transfer weights")
        pts_vol_flatten = pts_vol.reshape(-1, 3)
        pts_weights = hand_mri.transfer_weights(v, hand_mesh.weights,
                                                pts_vol_flatten)
        print("========back to mano canonical")
        pts_vol_mano_c, j_mano_c = hand_mesh.reverse_abs_quat(
            pts_vol_flatten, j, pts_weights, theta_mano)
        # v_c, v_j_c = hand_mesh.reverse_abs_quat(v, j, hand_mesh.weights, theta_mano)
        # np.savetxt("../video/ev_20200708_151823/{:06d}_mri_vol_manoc.xyz".format(frameid), v_c)
        # continue

        # warp to mri canonical
        print("=======warp to mri canonical")
        mri_v = hand_mri.warp_pts(pts_vol_mano_c, pts_weights)
        # np.save("../video/ev_20200708_151823/{:06d}_mri_vol_q.npy".format(frameid), mri_v)
        # mri_v_hand = hand_mri.warp_pts(v_c, hand_mesh.weights)
        # np.savetxt("../video/ev_20200708_151823/{:06d}_mri_vol_mano.xyz".format(frameid), mri_v_hand)
        # continue

        # run tiny nerf
        print("=======run nerf")
        inside_mask = np.ones(mri_v.shape[0]).astype(np.int)
        inside_mask = inside_mask > 0
        mri, label, mri_nii, label_nii = tnerf.render_pts(mri_v,
                                                          inside_mask,
                                                          vol_size,
                                                          spacing=mri_spacing)
        sitk.WriteImage(
            mri_nii,
            "../video/ev_20200708_151823/{:06d}_mri_vol.nii.gz".format(
                frameid))
        sitk.WriteImage(
            mri_nii,
            "/data/new_disk/liyuwei/nnUNet/Hand_MRI_segdata/tracking_test/{:06d}_mri_vol.nii.gz"
            .format(frameid))
        sitk.WriteImage(
            label_nii,
            "../video/ev_20200708_151823/{:06d}_mri_vol_label.nii.gz".format(
                frameid))

        mri_color = np.tile(mri.reshape(-1, 1), 3)
        label_color = np.zeros_like(mri_color)
        label = label.reshape(-1)
        label_color[label == 1] = [1, 0, 0]
        label_color[label == 2] = [0, 1, 0]
        label_mask = label > 0

        label_meshes = hand_mri.labelvol2mesh(pts_vol, label.reshape(vol_size),
                                              mri_spacing)

        v *= 2  # for better visualization
        v = v * 1000 + np.array([0, 0, 400])
        v = mesh_smoother.process(v)
        mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
        mesh.vertices = o3d.utility.Vector3dVector(np.matmul(view_mat, v.T).T)
        mesh.paint_uniform_color(config.HAND_COLOR)
        mesh.compute_triangle_normals()
        mesh.compute_vertex_normals()

        pts_vol_flatten *= 2
        pts_vol_flatten = pts_vol_flatten * 1000 + np.array([0, 0, 400])
        pts_vol_flatten = np.matmul(view_mat, pts_vol_flatten.T).T
        mri_pcl.points = o3d.utility.Vector3dVector(pts_vol_flatten)
        mri_pcl.colors = o3d.utility.Vector3dVector(mri_color)

        bone_pcl.points = o3d.utility.Vector3dVector(
            pts_vol_flatten[label_mask])
        bone_pcl.colors = o3d.utility.Vector3dVector(label_color[label_mask])
        # marching cube
        for m in range(len(label_meshes)):
            label_meshes[m].vertices *= 2
            label_meshes[
                m].vertices = label_meshes[m].vertices * 1000 + np.array(
                    [0, 0, 400])
            label_meshes[m].vertices = np.matmul(view_mat,
                                                 label_meshes[m].vertices.T).T
            label_meshes[m].export(
                "../video/ev_20200708_151823/{:06d}_mri_label{:d}.ply".format(
                    frameid, m + 1))

        # save mesh to file
        # np.save("../video/ev_20200708_151823/{:06d}_mri_vol.npy".format(frameid), pts_vol_flatten)
        o3d.io.write_triangle_mesh(
            "../video/ev_20200708_151823/{:06d}.ply".format(frameid), mesh)
        o3d.io.write_point_cloud(
            "../video/ev_20200708_151823/{:06d}_mri.ply".format(frameid),
            mri_pcl)
        o3d.io.write_point_cloud(
            "../video/ev_20200708_151823/{:06d}_bone.ply".format(frameid),
            bone_pcl)
        cv2.imwrite("../video/ev_20200708_151823/{:06d}.png".format(frameid),
                    frame_large)

        # for some version of open3d you may need `viewer.update_geometry(mesh)`
        # viewer.update_geometry()

        # viewer.poll_events()
        #
        # display.blit(
        #   pygame.surfarray.make_surface(
        #     np.transpose(
        #       imresize(frame_large, (window_size, window_size)
        #     ), (1, 0, 2))
        #   ),
        #   (0, 0)
        # )
        # pygame.display.update()

        # if keyboard.is_pressed("esc"):
        #     break

        clock.tick(30)
num_hands_detect = 2

smoother1 = OneEuroFilter(4.0, 0.0)
smoother2 = OneEuroFilter(4.0, 0.0)

# cv2.namedWindow('Single-Threaded Detection', cv2.WINDOW_NORMAL)

imgi = 0
dery = [False, False]
lboxes = None

view_mat = axangle2mat([1, 0, 0], np.pi)
window_size_w = 640
window_size_h = 480

hand_mesh = HandMesh(config.HAND_MESH_MODEL_PATH)
mesh = o3d.geometry.TriangleMesh()
mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
mesh.vertices = \
    o3d.utility.Vector3dVector(np.matmul(view_mat, hand_mesh.verts.T).T * 1000)
mesh.compute_vertex_normals()

# viewer1 = o3d.visualization.Visualizer()
# viewer1.create_window(
#     width=window_size_w + 1, height=window_size_h + 1,
#     window_name='Minimal Hand - output'
# )
# viewer1.add_geometry(mesh)

# viewer2 = o3d.visualization.Visualizer()
# viewer2.create_window(
Esempio n. 6
0
def live_application(capture):
    """
  Launch an application that reads from a webcam and estimates hand pose at
  real-time.

  The captured hand must be the right hand, but will be flipped internally
  and rendered.

  Parameters
  ----------
  capture : object
    An object from `capture.py` to read capture stream from.
  """
    ############ output visualization ############
    view_mat = axangle2mat([1, 0, 0],
                           np.pi)  # align different coordinate systems
    window_size = 1080

    hand_mesh = HandMesh(config.HAND_MESH_MODEL_PATH)
    mesh = o3d.geometry.TriangleMesh()
    mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
    mesh.vertices = \
      o3d.utility.Vector3dVector(np.matmul(view_mat, hand_mesh.verts.T).T * 1000)
    mesh.compute_vertex_normals()

    viewer = o3d.visualization.Visualizer()
    viewer.create_window(width=window_size + 1,
                         height=window_size + 1,
                         window_name='Minimal Hand - output')
    viewer.add_geometry(mesh)

    view_control = viewer.get_view_control()
    cam_params = view_control.convert_to_pinhole_camera_parameters()
    extrinsic = cam_params.extrinsic.copy()
    extrinsic[0:3, 3] = 0
    cam_params.extrinsic = extrinsic
    cam_params.intrinsic.set_intrinsics(window_size + 1, window_size + 1,
                                        config.CAM_FX, config.CAM_FY,
                                        window_size // 2, window_size // 2)
    view_control.convert_from_pinhole_camera_parameters(cam_params)
    view_control.set_constant_z_far(1000)

    render_option = viewer.get_render_option()
    render_option.load_from_json('./render_option.json')
    viewer.update_renderer()

    ############ input visualization ############
    pygame.init()
    display = pygame.display.set_mode((window_size, window_size))
    pygame.display.set_caption('Minimal Hand - input')

    ############ misc ############
    mesh_smoother = OneEuroFilter(4.0, 0.0)
    clock = pygame.time.Clock()
    model = ModelPipeline()
    # image_paths = glob.glob("samples_benet/casa/*")

    input_video_path = "../How2Sign/utterance_level/train/rgb_front/features/hand_video/CVmyQR31Dr4_5-3-rgb_front.mp4"
    output_video_path = "../How2Sign/utterance_level/train/rgb_front/features/hand_pose_video/CVmyQR31Dr4_5-3-rgb_front.mp4"
    output_frames_folder = "../How2Sign/utterance_level/train/rgb_front/features/hand_pose_frames/CVmyQR31Dr4_5-3-rgb_front"
    output_pose_file = "../How2Sign/utterance_level/train/rgb_front/features/hand_pose/CVmyQR31Dr4_5-3-rgb_front.pickle"

    os.system("mkdir " + output_frames_folder)

    cap = cv2.VideoCapture(input_video_path)
    length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = cap.get(cv2.CAP_PROP_FPS)

    # for inputpath in image_paths:
    # for i in range(length):

    writer = cv2.VideoWriter(output_video_path,
                             cv2.VideoWriter_fourcc(*'PIM1'), fps, (1081, 731))

    pose_data = []

    for i in range(length):
        # frame_large = capture.read()
        #inputpath = "samples_benet/hand_far.jpg"
        # frame_large = cv2.imread(inputpath)
        ret, frame_large = cap.read()

        frame_large = cv2.cvtColor(frame_large, cv2.COLOR_BGR2RGB)

        if frame_large is None:
            continue
        if frame_large.shape[0] > frame_large.shape[1]:
            margin = int((frame_large.shape[0] - frame_large.shape[1]) / 2)
            frame_large = frame_large[margin:-margin]
        elif frame_large.shape[0] < frame_large.shape[1]:
            print()
            margin = int((frame_large.shape[1] - frame_large.shape[0]) / 2)
            frame_large = frame_large[:, margin:-margin]

        frame_large = np.flip(frame_large, axis=1).copy()

        frame = imresize(frame_large, (128, 128))
        # plt.imshow(frame)
        # plt.show()

        _, theta_mpii = model.process(frame)
        theta_mano = mpii_to_mano(theta_mpii)

        pose_data.append(theta_mano)

        v = hand_mesh.set_abs_quat(theta_mano)
        v *= 2  # for better visualization
        v = v * 1000 + np.array([0, 0, 400])
        v = mesh_smoother.process(v)
        mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
        mesh.vertices = o3d.utility.Vector3dVector(np.matmul(view_mat, v.T).T)
        mesh.paint_uniform_color(config.HAND_COLOR)
        mesh.compute_triangle_normals()
        mesh.compute_vertex_normals()
        # for some version of open3d you may need `viewer.update_geometry(mesh)`
        viewer.update_geometry()

        viewer.poll_events()

        write_rendered_frame(writer, viewer, output_frames_folder, i)

        display.blit(
            pygame.surfarray.make_surface(
                np.transpose(imresize(frame_large, (window_size, window_size)),
                             (1, 0, 2))), (0, 0))
        pygame.display.update()
        # pygame.image.save(display, "kk.jpeg")
        # if keyboard.is_pressed("esc"):
        #   break

        # clock.tick(30)

    with open(output_pose_file, "wb") as output:
        pickle.dump(pose_data, output)
Esempio n. 7
0
        label_nii = nda2vol(label.reshape(vol_size).transpose(2, 1, 0), spacing, self.nerf_dict['target_origin'],
                            self.nerf_dict['target_direction'])
        return mri, label, mri_nii, label_nii


mri_spacing = [0.5, 0.5, 0.5]
# global_trans = [137.6553, 232.4672, 69.1232]

if __name__ == "__main__":
    # q_lists = "/data/new_disk/liyuwei/mano/tiny_nerf/test/"
    q_lists = "/data/new_disk/liyuwei/video/ev_20200708_151823/"
    nerf_pkl = "../mano/tiny_nerf/nerf_vol4_rest_fg_n2_muscle/"
    gpu = "2"
    tnerf = TinyNerf(nerf_pkl, gpu="2")
    hand_mri = HandMRI()
    hand_mesh = HandMesh(config.HAND_MESH_MODEL_PATH)

    for i in range(500):
        fname_mriq = q_lists + "{:06d}_mri_vol_q.npy".format(i + 1)
        fname_mri = q_lists + "{:06d}_mri_vol.npy".format(i + 1)

        if not os.path.exists(fname_mriq):
            continue

        fname_size = q_lists + "{:06d}_mri_vol_q_size.npy".format(i + 1)
        pts_vol_size = np.load(fname_size).astype(np.int).reshape(-1)

        theta_mano = np.load(q_lists + "{:06d}_abs_quat.npy".format(i + 1))
        v, j = hand_mesh.set_abs_quat(theta_mano)
        pts_vol = hand_mri.mano_to_vol(v, spacing=mri_spacing)
        assert np.sum(pts_vol.shape[:3] - pts_vol_size) == 0
Esempio n. 8
0
def live_application(capture):
    """
    Launch an application that reads from a webcam and estimates hand pose at
    real-time.

    The captured hand must be the right hand, but will be flipped internally
    and rendered.

    Parameters
    ----------
    capture : object
        An object from `capture.py` to read capture stream from.
    """

    view_mat = axangle2mat([1, 0, 0], np.pi)
    window_size_w = 640
    window_size_h = 480

    hand_mesh = HandMesh(config.HAND_MESH_MODEL_PATH) 
    mesh = o3d.geometry.TriangleMesh()
    mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
    mesh.vertices = \
        o3d.utility.Vector3dVector(np.matmul(view_mat, hand_mesh.verts.T).T * 1000)
    mesh.compute_vertex_normals()

    viewer = o3d.visualization.Visualizer()
    viewer.create_window(
        width=window_size_w + 1, height=window_size_h + 1,
        window_name='Minimal Hand - output'
    )
    viewer.add_geometry(mesh)

    view_control = viewer.get_view_control()
    cam_params = view_control.convert_to_pinhole_camera_parameters()
    extrinsic = cam_params.extrinsic.copy()
    extrinsic[0:3, 3] = 0
    cam_params.extrinsic = extrinsic
    cam_params.intrinsic.set_intrinsics(
        window_size_w + 1, window_size_h + 1, config.CAM_FX, config.CAM_FY,
        window_size_w // 2, window_size_h // 2
    )
    view_control.convert_from_pinhole_camera_parameters(cam_params)
    view_control.set_constant_z_far(1000)

    render_option = viewer.get_render_option()
    render_option.load_from_json('./render_option.json')
    viewer.update_renderer()

    mesh_smoother = OneEuroFilter(4.0, 0.0)
    cords_smoother = OneEuroFilter(4.0, 0.0)
    model = ModelPipeline()

    while True:
        frame_large = capture.read()
        if frame_large is None:
            continue
        if frame_large.shape[0] > frame_large.shape[1]:
            margin = int((frame_large.shape[0] - frame_large.shape[1]) / 2)
            frame_large = frame_large[margin:-margin]
        else:
            margin = int((frame_large.shape[1] - frame_large.shape[0]) / 2)
            frame_large = frame_large[:, margin:-margin]

        if config.left is False:
            frame_large = np.flip(frame_large, axis=1).copy()
        frame = imresize(frame_large, (128, 128))

        cords, theta_mpii = model.process(frame)
        theta_mano = mpii_to_mano(theta_mpii)

        v = hand_mesh.set_abs_quat(theta_mano)
        # v *= 2 # for better visualization
        v = v * 1000 + np.array([0, 0, 400])
        # v = np.array([x+cords[0] for x in v])
        v = mesh_smoother.process(v)
        mesh.triangles = o3d.utility.Vector3iVector(hand_mesh.faces)
        mesh.vertices = o3d.utility.Vector3dVector(np.matmul(view_mat, v.T).T)
        mesh.paint_uniform_color(config.HAND_COLOR)
        mesh.compute_triangle_normals()
        mesh.compute_vertex_normals()
        # for some version of open3d you may need `viewer.update_geometry(mesh)`
        viewer.update_geometry()

        viewer.poll_events()

        cords = cords_smoother.process(cords)

        cords = cords * 150 + 200
        cords = np.delete(cords, 2, 1)

        # v = v * 1.5 + 200
        # v = np.delete(v, 2, 1)

        frame_large = cv2.cvtColor(frame_large, cv2.COLOR_RGB2BGR)
        # cv2.polylines(frame_large, v, False, (0, 0, 0))
        for x in cords:
            cv2.drawMarker(frame_large, (int(x[0]), int(x[1])), (0, 0, 0))
            # cv2.line(frame_large, (int(v[x][0]), int(v[x][1])), (int(v[x+1][0]), int(v[x+1][1])), (0, 0, 0))

        # meshindices = np.array(mesh.triangles)
        # meshvertices = np.array(mesh.vertices) - 80

        # pts2d = cv2.projectPoints(meshvertices, (0, 0, 0), (0, 0, 0), np.array([[620.744, 0., 0.], [0., 621.151, 0.], [0., 0., 1.]]), None)[0].astype(int)
        # for face in meshindices:
        #     cv2.fillConvexPoly(frame_large, pts2d[face], (64, 64, 192))
        # cv2.polylines(frame_large, pts2d[meshindices], True, (255, 255, 255))

        # cv2.polylines(frame_large, v, False, (0, 0, 0))
        cv2.imshow("Hand AI", frame_large)

        if keyboard.is_pressed("q"):
            cv2.destroyAllWindows()
            break

        cv2.waitKey(1)
        time.sleep(0.0015)