Esempio n. 1
0
    def init_hand_tracking(self):
        """Initiates hand tracker and 3 initial bounding point sets"""
        #Initialize hand tracker
        self.tracker = HandTracking()

        #Get 3 successive sets of features (feature: array of points)
        #Each feature array is based on a frame's bounding boxes
        #and indicates the areas for which optical flow should be calculated
        self.mpts0 = self.tracker.getBoundingMidpoints(self.img0)
        self.mpts1 = self.tracker.getBoundingMidpoints(self.img1)
        self.mpts2 = self.tracker.getBoundingMidpoints(self.img2)
Esempio n. 2
0
class Gestures():
    def __init__(self):
        #initialize the webcam
        self.camera = Webcam()

        #initialize optical debug mode
        self.opticalDebugMode = False

        #initialize the video window
        cv2.namedWindow(WIN_NAME, cv2.CV_WINDOW_AUTOSIZE)

        #start collecting frames for processing
        self.init_frames()

        #initialize Algorithm instance
        self.alg = Algorithm()

    def start(self):
        """Runs image processing loop"""
        while True:

            self.update_frames()
            self.alg.calc_scroll(self.dir)

            key = cv2.waitKey(4)
            if key == 27:
                #Quit if the user presses ESC
                self.stop_gui()
                break
            if key == 104:
                #Toggle hand tracking debug window
                self.tracker.toggle_debug()
            if key == 111:
                #Toggle optical flow debug window
                self.toggle_optical()

    def init_frames(self):
        """Initiates camera and 3 initial frames for processing"""
        #Get 3 successive frames for difference calculation
        self.img0, self.frame0 = self.camera.get_frame_bgr_and_gray()
        self.img1, self.frame1 = self.camera.get_frame_bgr_and_gray()
        self.img2, self.frame2 = self.camera.get_frame_bgr_and_gray()

        if USE_HANDTRACKING:
            self.init_hand_tracking()

    def init_hand_tracking(self):
        """Initiates hand tracker and 3 initial bounding point sets"""
        #Initialize hand tracker
        self.tracker = HandTracking()

        #Get 3 successive sets of features (feature: array of points)
        #Each feature array is based on a frame's bounding boxes
        #and indicates the areas for which optical flow should be calculated
        self.mpts0 = self.tracker.getBoundingMidpoints(self.img0)
        self.mpts1 = self.tracker.getBoundingMidpoints(self.img1)
        self.mpts2 = self.tracker.getBoundingMidpoints(self.img2)

    def update_frames(self):
        """Updates frames for next loop of processing"""
        #Store old frames
        self.img0 = self.img1
        self.frame0 = self.frame1

        #Get new rgb and grayscale frames
        self.img1, self.frame1 = self.camera.get_frame_bgr_and_gray()

        #Update bounding arrays
        if USE_HANDTRACKING:
            self.mpts0 = self.mpts1
            self.mpts1 = self.tracker.getBoundingMidpoints(self.img1)
            self.dir = self.get_direction_vector()
            self.tracker.update_dir_data(self.dir)

        if self.opticalDebugMode:  #Show optical flow field
            flow = cv2.calcOpticalFlowFarneback(self.frame0, self.frame1,
                                                PYR_SCALE, LEVELS, WINSIZE,
                                                ITER, POLY_N, POLY_SIGMA,
                                                FLAGS)
            image = self.alg.create_flow(
                self.frame1, flow, 10)  #create the flow overlay for display
            self.show_image(image)

    def get_direction_vector(self):
        """Calculates the vector between the midpoints of bounding boxes."""
        if len(self.mpts0) is not len(self.mpts1):
            return

        diffs = []
        for i in range(len(self.mpts0)):
            mp0 = self.mpts0[i]
            mp1 = self.mpts1[i]
            diff = [a - b for a, b in zip(mp1, mp0)]
            dist = np.sqrt(diff[0]**2 + diff[1]**2)
            diffs.append((diff, dist))

        if len(diffs) == 0:
            return None

        return max(diffs, key=lambda a: a[1])

    def toggle_optical(self):
        """Toggle the optical flow debug window"""
        self.opticalDebugMode = not self.opticalDebugMode

        if self.opticalDebugMode:
            #initialize the video window
            cv2.namedWindow(WIN_NAME, cv2.CV_WINDOW_AUTOSIZE)
        else:
            self.stop_gui()

    def show_image(self, img):
        """Show a GUI with the webcam feed for debugging purposes"""
        cv2.imshow(WIN_NAME, img)

    def stop_gui(self):
        """Stop the webcam"""
        cv2.destroyWindow(WIN_NAME)
Esempio n. 3
0
 def StartbuttonClicked(self):
     HandTracking.run()