Esempio n. 1
0
def get_placement_recipe(chosen_object, handarm_params, grasp_type):

    place_time = handarm_params['place_duration']
    down_speed = handarm_params['place_down_speed']

    # The twists are defined on the world frame
    down_twist = np.array([0, 0, -down_speed, 0, 0, 0])

    # assemble controller sequence
    control_sequence = []

    # 1. Place in IFCO
    control_sequence.append(
        ha.CartesianVelocityControlMode(down_twist,
                                        controller_name='PlaceInIFCO',
                                        name='PlaceInIFCO',
                                        reference_frame="world"))

    # 1b. Switch after a certain amount of time
    control_sequence.append(
        ha.TimeSwitch('PlaceInIFCO', 'softhand_open', duration=place_time))

    # 2. Release SKU
    control_sequence.append(
        ha.GeneralHandControlMode(goal=np.array([0]),
                                  name='softhand_open',
                                  synergy=1))

    # 2b. Switch when hand opening time ends
    control_sequence.append(
        ha.TimeSwitch('softhand_open', 'finished', duration=0.5))

    # 3. Block joints to finish motion
    control_sequence.append(ha.BlockJointControlMode(name='finished'))

    return control_sequence
Esempio n. 2
0
def create_surface_grasp(chosen_object, handarm_params, pregrasp_transform, alternative_behavior=None):

    object_type = chosen_object['type']
    # Get the relevant parameters for hand object combination
    if object_type in handarm_params['SurfaceGrasp']:
        params = handarm_params['SurfaceGrasp'][object_type]
    else:
        params = handarm_params['SurfaceGrasp']['object']
    # Get params per phase

    # Approach phase
    downward_force = params['downward_force']
    down_speed = params['down_speed']

    # Grasping phase
    lift_time = params['corrective_lift_duration']
    up_speed = params['up_speed']
    hand_closing_time = params['hand_closing_duration']
    hand_synergy = params['hand_closing_synergy']

    success_estimator_timeout = handarm_params['success_estimator_timeout']

    # Set the twists to use TRIK controller with

    # Down speed is positive because it is defined on the EE frame
    down_twist = np.array([0, 0, down_speed, 0, 0, 0])
    # Slow Up speed is also positive because it is defined on the world frame
    up_twist = np.array([0, 0, up_speed, 0, 0, 0])

    # assemble controller sequence
    control_sequence = []

    # 0. Trigger pre-shaping the hand (if there is a synergy). The first 1 in the name represents a surface grasp.
    control_sequence.append(ha.BlockJointControlMode(name = 'softhand_preshape_1_1'))
    
    # 0b. Time to trigger pre-shape
    control_sequence.append(ha.TimeSwitch('softhand_preshape_1_1', 'PreGrasp', duration = hand_closing_time))

    # 1. Go above the object - Pregrasp
    control_sequence.append(ha.InterpolatedHTransformControlMode(pregrasp_transform, controller_name = 'GoAboveObject', goal_is_relative='0', name = 'PreGrasp'))
 
    # 1b. Switch when hand reaches the goal pose
    control_sequence.append(ha.FramePoseSwitch('PreGrasp', 'PrepareForMassMeasurement', controller = 'GoAboveObject', epsilon = '0.01'))
    
    # 2. Go to gravity compensation 
    control_sequence.append(ha.BlockJointControlMode(name = 'PrepareForMassMeasurement'))

    # 2b. Wait for a bit to allow vibrations to attenuate
    control_sequence.append(ha.TimeSwitch('PrepareForMassMeasurement', 'ReferenceMassMeasurement', duration = 0.5))

    # 3. Reference mass measurement with empty hand (TODO can this be replaced by offline calibration?)
    control_sequence.append(ha.BlockJointControlMode(name='ReferenceMassMeasurement'))  # TODO use gravity comp instead?

    # 3b. Switches when reference measurement was done
    # 3b.1 Successful reference measurement
    control_sequence.append(ha.RosTopicSwitch('ReferenceMassMeasurement', 'GoDown',
                                              ros_topic_name='/graspSuccessEstimator/status', ros_topic_type='Float64',
                                              goal=np.array([RESPONSES.REFERENCE_MEASUREMENT_SUCCESS.value]),
                                              ))

    # 3b.2 The grasp success estimator module is inactive
    control_sequence.append(ha.RosTopicSwitch('ReferenceMassMeasurement', 'GoDown',
                                              ros_topic_name='/graspSuccessEstimator/status', ros_topic_type='Float64',
                                              goal=np.array([RESPONSES.GRASP_SUCCESS_ESTIMATOR_INACTIVE.value]),
                                              ))

    # 3b.3 Timeout (grasp success estimator module not started, an error occurred or it takes too long)
    control_sequence.append(ha.TimeSwitch('ReferenceMassMeasurement', 'GoDown',
                                          duration=success_estimator_timeout))

    # 3b.4 There is no special switch for unknown error response (estimator signals REFERENCE_MEASUREMENT_FAILURE)
    #      Instead the timeout will trigger giving the user an opportunity to notice the erroneous result in the GUI.

    # 4. Go down onto the object (relative in EE frame) - Godown
    control_sequence.append(ha.CartesianVelocityControlMode(down_twist,
                                             controller_name='GoDown',
                                             name="GoDown",
                                             reference_frame="EE"))

    # force threshold that if reached will trigger the closing of the hand
    force = np.array([0, 0, downward_force, 0, 0, 0])
    
    # 4b. Switch when force-torque sensor is triggered
    control_sequence.append(ha.ForceTorqueSwitch('GoDown',
                                                 'LiftHand',
                                                 goal = force,
                                                 norm_weights = np.array([0, 0, 1, 0, 0, 0]),
                                                 jump_criterion = "THRESH_UPPER_BOUND",
                                                 goal_is_relative = '1',
                                                 frame_id = 'world'))

    # 5. Lift upwards so the hand can inflate
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_twist, controller_name='CorrectiveLift', name="LiftHand",
                                             reference_frame="world"))

    # the 1 in softhand_close_1 represents a surface grasp. This way the strategy is encoded in the HA.
    mode_name_hand_closing = 'softhand_close_1_0'

    # 5b. We switch after a short time 
    control_sequence.append(ha.TimeSwitch('LiftHand', mode_name_hand_closing, duration=lift_time))

    # 6. Call hand controller
    control_sequence.append(ha.GeneralHandControlMode(goal = np.array([1]), name = mode_name_hand_closing, synergy = hand_synergy))
   
    # 6b. Switch when hand closing time ends
    control_sequence.append(ha.TimeSwitch(mode_name_hand_closing, 'GoUp_1', duration = hand_closing_time))

    return control_sequence
Esempio n. 3
0
def create_wall_grasp(chosen_object, wall_frame, handarm_params, pregrasp_transform, alternative_behavior=None):

    object_type = chosen_object['type']
    # Get the relevant parameters for hand object combination
    if object_type in handarm_params['WallGrasp']:
        params = handarm_params['WallGrasp'][object_type]
    else:
        params = handarm_params['WallGrasp']['object']

    # Get params per phase

    # Approach phase
    downward_force = params['downward_force']
    down_speed = params['down_speed']

    lift_time = params['corrective_lift_duration']
    up_speed = params['up_speed']

    wall_force = params['wall_force']
    slide_speed = params['slide_speed']

    # Grasping phase
    pre_grasp_twist = params['pre_grasp_twist']
    pre_grasp_rotate_time = params['pre_grasp_rotation_duration']
    hand_closing_time = params['hand_closing_duration']
    hand_synergy = params['hand_closing_synergy']

    # Post-grasping phase
    post_grasp_twist = params['post_grasp_twist']
    post_grasp_rotate_time = params['post_grasp_rotation_duration']

    success_estimator_timeout = handarm_params['success_estimator_timeout']

    # Set the twists to use TRIK controller with

    # Down speed is negative because it is defined on the world frame
    down_twist = np.array([0, 0, -down_speed, 0, 0, 0])
    # Slow Up speed is positive because it is defined on the world frame
    up_twist = np.array([0, 0, up_speed, 0, 0, 0])
    # Slide twist is positive because it is defined on the EE frame
    slide_twist = np.array([0, 0, slide_speed, 0, 0, 0])

    control_sequence = []

    # 0 trigger pre-shaping the hand (if there is a synergy). The 2 in the name represents a wall grasp.
    control_sequence.append(ha.BlockJointControlMode(name='softhand_preshape_2_1'))
    
    # 0b. Time for pre-shape
    control_sequence.append(ha.TimeSwitch('softhand_preshape_2_1', 'PreGrasp', duration=hand_closing_time)) 

    # 1. Go above the object - Pregrasp
    control_sequence.append(ha.InterpolatedHTransformControlMode(pregrasp_transform, controller_name = 'GoAboveObject', goal_is_relative='0', name = 'PreGrasp'))
 
    # 1b. Switch when hand reaches the goal pose
    control_sequence.append(ha.FramePoseSwitch('PreGrasp', 'PrepareForMassMeasurement', controller = 'GoAboveObject', epsilon = '0.01'))
    
    # 2. Go to gravity compensation 
    control_sequence.append(ha.BlockJointControlMode(name = 'PrepareForMassMeasurement'))

    # 2b. Wait for a bit to allow vibrations to attenuate
    control_sequence.append(ha.TimeSwitch('PrepareForMassMeasurement', 'ReferenceMassMeasurement', duration = 0.5))

    # 3. Reference mass measurement with empty hand (TODO can this be replaced by offline calibration?)
    control_sequence.append(ha.BlockJointControlMode(name='ReferenceMassMeasurement'))  # TODO use gravity comp instead?

    # 3b. Switches when reference measurement was done
    # 3b.1 Successful reference measurement
    control_sequence.append(ha.RosTopicSwitch('ReferenceMassMeasurement', 'GoDown',
                                              ros_topic_name='/graspSuccessEstimator/status', ros_topic_type='Float64',
                                              goal=np.array([RESPONSES.REFERENCE_MEASUREMENT_SUCCESS.value]),
                                              ))

    # 3b.2 The grasp success estimator module is inactive
    control_sequence.append(ha.RosTopicSwitch('ReferenceMassMeasurement', 'GoDown',
                                              ros_topic_name='/graspSuccessEstimator/status', ros_topic_type='Float64',
                                              goal=np.array([RESPONSES.GRASP_SUCCESS_ESTIMATOR_INACTIVE.value]),
                                              ))

    # 3b.3 Timeout (grasp success estimator module not started, an error occurred or it takes too long)
    control_sequence.append(ha.TimeSwitch('ReferenceMassMeasurement', 'GoDown',
                                          duration=success_estimator_timeout))

    # 3b.4 There is no special switch for unknown error response (estimator signals REFERENCE_MEASUREMENT_FAILURE)
    #      Instead the timeout will trigger giving the user an opportunity to notice the erroneous result in the GUI.


    # 4. Go down onto the object/table, in world frame
    control_sequence.append( ha.CartesianVelocityControlMode(down_twist,
                                             controller_name='GoDown',
                                             name="GoDown",
                                             reference_frame="world"))


    # 4b. Switch when force threshold is exceeded
    force = np.array([0, 0, downward_force, 0, 0, 0])
    control_sequence.append(ha.ForceTorqueSwitch('GoDown',
                                                 'LiftHand',
                                                 goal=force,
                                                 norm_weights=np.array([0, 0, 1, 0, 0, 0]),
                                                 jump_criterion="THRESH_UPPER_BOUND",
                                                 goal_is_relative='1',
                                                 frame_id='world'))

    # 5. Lift upwards so the hand doesn't slide on table surface
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_twist, controller_name='Lift1', name="LiftHand",
                                             reference_frame="world"))

    # 5b. We switch after a short time as this allows us to do a small, precise lift motion
    control_sequence.append(ha.TimeSwitch('LiftHand', 'SlideToWall', duration=lift_time))

    # 6. Go towards the wall to slide object to wall
    control_sequence.append(
        ha.CartesianVelocityControlMode(slide_twist, controller_name='SlideToWall',
                                             name="SlideToWall", reference_frame="EE"))

    # 6b. Switch when the f/t sensor is triggered with normal force from wall
    force = np.array([0, 0, wall_force, 0, 0, 0])
    control_sequence.append(ha.ForceTorqueSwitch('SlideToWall', 'SlideBackFromWall', 'ForceSwitch', goal=force,
                                                 norm_weights=np.array([0, 0, 1, 0, 0, 0]),
                                                 jump_criterion="THRESH_UPPER_BOUND", goal_is_relative='1',
                                                 frame_id='world', frame=wall_frame))

    # 7. Go back a bit to allow the hand to inflate
    control_sequence.append(
        ha.CartesianVelocityControlMode(pre_grasp_twist, controller_name='SlideBackFromWall',
                                             name="SlideBackFromWall", reference_frame="EE"))
    # The 2 in softhand_close_2 represents a wall grasp. This way the strategy is encoded in the HA.
    # The 0 encodes the synergy id
    mode_name_hand_closing = 'softhand_close_2_0'

    # 7b. We switch after a short time
    control_sequence.append(ha.TimeSwitch('SlideBackFromWall', mode_name_hand_closing, duration=pre_grasp_rotate_time))
    

    # 8. Maintain contact while closing the hand
    
    # Call general hand controller
    control_sequence.append(ha.GeneralHandControlMode(goal = np.array([1]), name  = mode_name_hand_closing, synergy = hand_synergy))
    

    # 8b. Switch when hand closing duration ends
    control_sequence.append(ha.TimeSwitch(mode_name_hand_closing, 'PostGraspRotate', duration=hand_closing_time))

    # 9. Rotate a bit to roll the object in the hand
    control_sequence.append(
        ha.CartesianVelocityControlMode(post_grasp_twist, controller_name='PostGraspRotate',
                                             name="PostGraspRotate", reference_frame="EE"))
    # 9b. We switch after a short time
    control_sequence.append(ha.TimeSwitch('PostGraspRotate', 'GoUp_1', duration=post_grasp_rotate_time))
    
    return control_sequence
Esempio n. 4
0
def get_transport_recipe(chosen_object,
                         handarm_params,
                         reaction,
                         FailureCases,
                         grasp_type,
                         alternative_behavior=None):

    object_type = chosen_object['type']
    # Get the relevant parameters for hand object combination
    if object_type in handarm_params[grasp_type]:
        params = handarm_params[grasp_type][object_type]
    else:
        params = handarm_params[grasp_type]['object']

    lift_time = params['lift_duration']
    up_speed = params['up_speed']
    drop_off_pose = handarm_params['drop_off_pose']

    success_estimator_timeout = handarm_params['success_estimator_timeout']

    # Up speed is positive because it is defined on the world frame
    up_twist = np.array([0, 0, up_speed, 0, 0, 0])

    # assemble controller sequence
    control_sequence = []

    # 1. Lift upwards
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_twist,
                                        controller_name='GoUpHTransform',
                                        name='GoUp_1',
                                        reference_frame="world"))

    # 1b. Switch after half the lift time
    control_sequence.append(
        ha.TimeSwitch('GoUp_1',
                      'EstimationMassMeasurement',
                      duration=lift_time / 2))

    # 2. Measure the mass again and estimate number of grasped objects (grasp success estimation)
    control_sequence.append(
        ha.BlockJointControlMode(name='EstimationMassMeasurement'))

    # 2b. Switches after estimation measurement was done
    target_cm_okay = 'GoUp_2'

    # 2b.1 No object was grasped => go to failure mode.
    target_cm_estimation_no_object = reaction.cm_name_for(
        FailureCases.MASS_ESTIMATION_NO_OBJECT, default=target_cm_okay)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_estimation_no_object,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_NO_OBJECT.value]),
        ))

    # 2b.2 More than one object was grasped => failure
    target_cm_estimation_too_many = reaction.cm_name_for(
        FailureCases.MASS_ESTIMATION_TOO_MANY, default=target_cm_okay)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_estimation_too_many,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_TOO_MANY.value]),
        ))

    # 2b.3 Exactly one object was grasped => success (continue lifting the object and go to drop off)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_okay,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_OKAY.value]),
        ))

    # 2b.4 The grasp success estimator module is inactive => directly continue lifting the object and go to drop off
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_okay,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.GRASP_SUCCESS_ESTIMATOR_INACTIVE.value]),
        ))

    # 2b.5 Timeout (grasp success estimator module not started, an error occurred or it takes too long)
    control_sequence.append(
        ha.TimeSwitch('EstimationMassMeasurement',
                      target_cm_okay,
                      duration=success_estimator_timeout))

    # 2b.6 There is no special switch for unknown error response (estimator signals ESTIMATION_RESULT_UNKNOWN_FAILURE)
    #      Instead the timeout will trigger giving the user an opportunity to notice the erroneous result in the GUI.

    # 3. After estimation measurement control modes.
    extra_failure_cms = set()
    if target_cm_estimation_no_object != target_cm_okay:
        extra_failure_cms.add(target_cm_estimation_no_object)
    if target_cm_estimation_too_many != target_cm_okay:
        extra_failure_cms.add(target_cm_estimation_too_many)

    for cm in extra_failure_cms:
        if cm.startswith('failure_rerun'):
            # 3.1 Failure control mode representing grasping failure, which might be corrected by re-running the plan.
            control_sequence.append(ha.BlockJointControlMode(name=cm))
        if cm.startswith('failure_replan'):
            # 3.2 Failure control mode representing grasping failure, which can't be corrected and requires to re-plan.
            control_sequence.append(ha.BlockJointControlMode(name=cm))

    # 3.3 Success control mode. Lift hand even further
    control_sequence.append(
        ha.CartesianVelocityControlMode(up_twist,
                                        controller_name='GoUpHTransform',
                                        name=target_cm_okay,
                                        reference_frame="world"))

    # 3b. Switch after half the lift time
    control_sequence.append(
        ha.TimeSwitch(target_cm_okay, 'GoDropOff', duration=lift_time / 2))

    # 4. Go above the object - Pregrasp
    control_sequence.append(
        ha.InterpolatedHTransformControlMode(drop_off_pose,
                                             controller_name='GoToDropPose',
                                             goal_is_relative='0',
                                             name='GoDropOff'))

    # 4b. Switch when hand reaches the goal pose
    control_sequence.append(
        ha.FramePoseSwitch('GoDropOff',
                           'PlaceInIFCO',
                           controller='GoToDropPose',
                           epsilon='0.01'))

    return control_sequence
Esempio n. 5
0
def get_transport_recipe(chosen_object, handarm_params, reaction, FailureCases,
                         grasp_type):

    object_type = chosen_object['type']
    # Get the relevant parameters for hand object combination
    if object_type in handarm_params[grasp_type]:
        params = handarm_params[grasp_type][object_type]
    else:
        params = handarm_params[grasp_type]['object']

    # ############################ #
    # Get params
    # ############################ #

    up_dist = params['up_dist']

    # split the lifted distance into two consecutive lifts (with success estimation in between)
    scale_up = 0.7
    dir_up1 = tra.translation_matrix([0, 0, scale_up * up_dist])
    dir_up2 = tra.translation_matrix([0, 0, (1.0 - scale_up) * up_dist])

    success_estimator_timeout = handarm_params['success_estimator_timeout']

    drop_off_config = handarm_params['drop_off_config']

    # ############################ #
    # Assemble controller sequence
    # ############################ #

    control_sequence = []

    # 1. Lift upwards a little bit (half way up)
    control_sequence.append(
        ha.InterpolatedHTransformControlMode(dir_up1,
                                             controller_name='GoUpHTransform',
                                             name='GoUp_1',
                                             goal_is_relative='1',
                                             reference_frame="world"))

    # 1b. Switch when joint configuration (half way up) is reached
    control_sequence.append(
        ha.FramePoseSwitch('GoUp_1',
                           'PrepareForEstimationMassMeasurement',
                           controller='GoUpHTransform',
                           epsilon='0.01',
                           goal_is_relative='1',
                           reference_frame="world"))

    # 2. Hold current joint config
    control_sequence.append(
        ha.BlockJointControlMode(name='PrepareForEstimationMassMeasurement'))

    # 2b. Wait for a bit to allow vibrations to attenuate # TODO check if this is required...
    control_sequence.append(
        ha.TimeSwitch('PrepareForEstimationMassMeasurement',
                      'EstimationMassMeasurement',
                      duration=0.5))

    # 3. Measure the mass again and estimate number of grasped objects (grasp success estimation)
    control_sequence.append(
        ha.BlockJointControlMode(name='EstimationMassMeasurement'))

    # 3b. Switches after estimation measurement was done
    target_cm_okay = 'GoUp_2'

    # 3b.1 No object was grasped => go to failure mode.
    target_cm_estimation_no_object = reaction.cm_name_for(
        FailureCases.MASS_ESTIMATION_NO_OBJECT, default=target_cm_okay)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_estimation_no_object,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_NO_OBJECT.value]),
        ))

    # 3b.2 More than one object was grasped => failure
    target_cm_estimation_too_many = reaction.cm_name_for(
        FailureCases.MASS_ESTIMATION_TOO_MANY, default=target_cm_okay)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_estimation_too_many,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_TOO_MANY.value]),
        ))

    # 3b.3 Exactly one object was grasped => success (continue lifting the object and go to drop off)
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_okay,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.ESTIMATION_RESULT_OKAY.value]),
        ))

    # 3b.4 The grasp success estimator module is inactive => directly continue lifting the object and go to drop off
    control_sequence.append(
        ha.RosTopicSwitch(
            'EstimationMassMeasurement',
            target_cm_okay,
            ros_topic_name='/graspSuccessEstimator/status',
            ros_topic_type='Float64',
            goal=np.array([RESPONSES.GRASP_SUCCESS_ESTIMATOR_INACTIVE.value]),
        ))

    # 3b.5 Timeout (grasp success estimator module not started, an error occurred or it takes too long)
    control_sequence.append(
        ha.TimeSwitch('EstimationMassMeasurement',
                      target_cm_okay,
                      duration=success_estimator_timeout))

    # 3b.6 There is no special switch for unknown error response (estimator signals ESTIMATION_RESULT_UNKNOWN_FAILURE)
    #      Instead the timeout will trigger giving the user an opportunity to notice the erroneous result in the GUI.

    # 4. After estimation measurement control modes.
    extra_failure_cms = set()
    if target_cm_estimation_no_object != target_cm_okay:
        extra_failure_cms.add(target_cm_estimation_no_object)
    if target_cm_estimation_too_many != target_cm_okay:
        extra_failure_cms.add(target_cm_estimation_too_many)

    for cm in extra_failure_cms:
        if cm.startswith('failure_rerun'):
            # 4.1 Failure control mode representing grasping failure, which might be corrected by re-running the plan.
            control_sequence.append(ha.GravityCompensationMode(name=cm))
        if cm.startswith('failure_replan'):
            # 4.2 Failure control mode representing grasping failure, which can't be corrected and requires to re-plan.
            control_sequence.append(ha.GravityCompensationMode(name=cm))

    # 4.3 Success control mode. Lift hand even further
    control_sequence.append(
        ha.InterpolatedHTransformControlMode(dir_up2,
                                             controller_name='GoUpHTransform',
                                             name=target_cm_okay,
                                             goal_is_relative='1',
                                             reference_frame="world"))

    # 4.3b Switch when joint configuration is reached
    control_sequence.append(
        ha.FramePoseSwitch(target_cm_okay,
                           'GoDropOff',
                           controller='GoUpHTransform',
                           epsilon='0.01',
                           goal_is_relative='1',
                           reference_frame="world"))

    # 5. Go to dropOFF location
    control_sequence.append(
        ha.JointControlMode(drop_off_config,
                            controller_name='GoToDropJointConfig',
                            name='GoDropOff'))

    # 5.b  Switch when joint is reached
    control_sequence.append(
        ha.JointConfigurationSwitch('GoDropOff',
                                    'finished',
                                    controller='GoToDropJointConfig',
                                    epsilon=str(math.radians(7.))))

    # 6. Block joints to finish motion and hold object in air
    control_sequence.append(ha.BlockJointControlMode(name='finished'))

    return control_sequence