Esempio n. 1
0
    def _apply_rl_actions(self, rl_actions):
        """See class definition."""
        if self.env_params.additional_params["use_follower_stopper"]:
            for veh_id in rl_actions.keys():
                self._av_controller.veh_id = veh_id
                self._av_controller.v_des = rl_actions[veh_id][0]
                acceleration = self._av_controller.get_action(self)

                # Apply the action via the simulator.
                self.k.vehicle.apply_acceleration(veh_id, acceleration)
        else:
            rl_ids = list(rl_actions.keys())

            acceleration = get_rl_accel(
                accel=[deepcopy(rl_actions[veh_id][0]) for veh_id in rl_ids],
                vel=self.k.vehicle.get_speed(rl_ids),
                max_accel=self.env_params.additional_params["max_accel"],
                dt=self.sim_step,
            )

            # Run the action through the controller, to include failsafe
            # actions.
            for i, veh_id in enumerate(rl_ids):
                acceleration[i] = self.k.vehicle.get_acc_controller(
                    veh_id).get_action(self, acceleration=acceleration[i])

            # Apply the action via the simulator.
            self.k.vehicle.apply_acceleration(acc=acceleration,
                                              veh_ids=list(rl_actions.keys()))
Esempio n. 2
0
    def _apply_per_lane_actions(self, rl_actions, veh_ids):
        """Apply accelerations to RL vehicles on a given lane.

        Parameters
        ----------
        rl_actions : array_like
            the actions to be performed on the given lane
        veh_ids : list of str
            the names of the RL vehicles on the given lane
        """
        if self.env_params.additional_params["use_follower_stopper"]:
            accelerations = []
            for i, veh_id in enumerate(veh_ids):
                self._av_controller.veh_id = veh_id
                self._av_controller.v_des = rl_actions[i]
                accelerations.append(self._av_controller.get_action(self))
        else:
            accelerations = get_rl_accel(
                accel=deepcopy(rl_actions),
                vel=self.k.vehicle.get_speed(veh_ids),
                max_accel=self.env_params.additional_params["max_accel"],
                dt=self.sim_step,
            )

            # Run the action through the controller, to include failsafe
            # actions.
            for i, veh_id in enumerate(veh_ids):
                accelerations[i] = self.k.vehicle.get_acc_controller(
                    veh_id).get_action(self, acceleration=accelerations[i])

        # Apply the actions via the simulator.
        self.k.vehicle.apply_acceleration(veh_ids,
                                          accelerations[:len(veh_ids)])
Esempio n. 3
0
    def _apply_rl_actions(self, rl_actions):
        """See class definition."""
        if self.env_params.additional_params["use_follower_stopper"]:
            accelerations = []
            for i, veh_id in enumerate(self.rl_ids()):
                self._av_controller.veh_id = veh_id
                self._av_controller.v_des = rl_actions[i]
                accelerations.append(self._av_controller.get_action(self))
        else:
            accelerations = get_rl_accel(
                accel=deepcopy(rl_actions),
                vel=self.k.vehicle.get_speed(self.rl_ids()),
                max_accel=self.env_params.additional_params["max_accel"],
                dt=self.sim_step,
            )

            # Run the action through the controller, to include failsafe
            # actions.
            for i, veh_id in enumerate(self.rl_ids()):
                accelerations[i] = self.k.vehicle.get_acc_controller(
                    veh_id).get_action(self, acceleration=accelerations[i])

        # Apply the actions via the simulator.
        self.k.vehicle.apply_acceleration(self.rl_ids(),
                                          accelerations[:len(self.rl_ids())])
Esempio n. 4
0
    def _apply_rl_actions(self, rl_actions):
        """See class definition."""
        for key in rl_actions.keys():
            # Get the lane ID.
            lane = int(key.split("_")[-1])

            # Get the acceleration for the given lane.
            acceleration = get_rl_accel(
                accel=deepcopy(rl_actions[key]),
                vel=self.k.vehicle.get_speed(self.rl_ids()[lane]),
                max_accel=self.env_params.additional_params["max_accel"],
                dt=self.sim_step,
            )

            # Apply the actions to the given lane.
            self._apply_per_lane_actions(acceleration, self.rl_ids()[lane])
Esempio n. 5
0
    def step(self, action):
        """Advance the simulation by one step."""
        collision = False
        done = False
        for _ in range(self.sims_per_step):
            self.t += 1

            # Compute the accelerations.
            self.accelerations = self._get_accel(self.speeds, self.headways)

            if self.rl_ids is not None and action is not None:
                # Compute the accelerations for RL vehicles.
                self.accelerations[self.rl_ids] = get_rl_accel(
                    accel=action,
                    vel=self.speeds[self.rl_ids],
                    max_accel=self.max_accel,
                    dt=self.dt,
                )

                # Clip by safe, non-negative bounds.
                accel_min = -self.speeds[self.rl_ids] / self.dt
                accel_max = self._failsafe(self.rl_ids)
                self.accelerations[self.rl_ids] = np.clip(
                    self.accelerations[self.rl_ids],
                    a_max=accel_max,
                    a_min=accel_min)

            # Update the speeds, positions, and headways.
            self.positions, self.speeds = self._update_state(
                pos=self.positions,
                vel=self.speeds,
                accel=self.accelerations,
            )
            self.headways = self._compute_headway()

            if self.gen_emission:
                data = {"t": self.t}
                data.update({
                    "pos_{}".format(i): self.positions[i]
                    for i in range(self.num_vehicles)
                })
                data.update({
                    "vel_{}".format(i): self.speeds[i]
                    for i in range(self.num_vehicles)
                })
                self._emission_data.append(data)

            # Determine whether the rollout is done.
            collision = any(self.headways < 0)
            done = (self.t >= (self.warmup_steps + self.horizon) *
                    self.sims_per_step) or collision

            if done:
                break

        if collision:
            print("Collision")

        info = {}
        if self.t > self.warmup_steps * self.sims_per_step:
            speed = np.mean(self.speeds)
            self._mean_speeds.append(speed)
            self._mean_accels.append(np.mean(np.abs(self.accelerations)))

            info.update({"v_eq": self._v_eq})
            info.update({"v_eq_frac": np.mean(self._mean_speeds) / self._v_eq})
            info.update({"v_eq_frac_final": speed / self._v_eq})
            info.update({"speed": np.mean(self._mean_speeds)})
            info.update({"abs_accel": np.mean(self._mean_accels)})

        obs = self.get_state()
        if isinstance(obs, dict):
            obs = {key: np.asarray(obs[key]) for key in obs.keys()}
        else:
            obs = np.asarray(self.get_state())

        reward = self.compute_reward(action if action is not None else [0])

        return obs, reward, done, info