def test_read_evoked():
    """Test reading evokeds."""
    for data_type in tconf.task_types:
        all_annots = list()
        for run_index in tconf.run_inds[:2]:
            annots = hcp.read_annot(
                data_type=data_type, run_index=run_index, **hcp_params)
            all_annots.append(annots)

        evokeds = hcp.read_evokeds(data_type=data_type,
                                   kind='average', **hcp_params)

        n_average = sum(ee.kind == 'average' for ee in evokeds)
        assert_equal(n_average, len(evokeds))

        n_chans = 248
        if data_type == 'task_motor':
            n_chans += 4
        n_chans -= len(set(sum(
            [an['channels']['all'] for an in all_annots], [])))
        assert_equal(n_chans, len(evokeds[0].ch_names))
        assert_true(
            _check_bounds(evokeds[0].times,
                          tconf.epochs_bounds[data_type])
        )
Esempio n. 2
0
def official_ERF():
    hcp_evokeds = hcp.read_evokeds(onset='stim', **hcp_params)

    for ev in hcp_evokeds:
        if not ev.comment == 'Wrkmem_LM-TIM-face_BT-diff_MODE-mag':
            continue

    # Once more we add and interpolate missing channels
    evoked_hcp = preproc.interpolate_missing(ev, **hcp_params)
    return evoked_hcp
Esempio n. 3
0
def test_map_ch_coords_to_mne():
    """Test mapping of channel coords to MNE."""
    data_type = 'task_working_memory'
    hcp_evokeds = hcp.read_evokeds(onset='stim', data_type=data_type,
                                   **hcp_params)
    for evoked in hcp_evokeds:
        if evoked.comment == 'Wrkmem_LM-TIM-face_BT-diff_MODE-mag':
            break
    old_coord = evoked.info['chs'][0]['loc']
    map_ch_coords_to_mne(evoked)
    new_coord = evoked.info['chs'][0]['loc']
    assert_true((old_coord != new_coord).any())
def test_map_ch_coords_to_mne():
    """Test mapping of channel coords to MNE."""
    data_type = 'task_working_memory'
    hcp_evokeds = hcp.read_evokeds(onset='stim',
                                   data_type=data_type,
                                   **hcp_params)
    for evoked in hcp_evokeds:
        if evoked.comment == 'Wrkmem_LM-TIM-face_BT-diff_MODE-mag':
            break
    old_coord = evoked.info['chs'][0]['loc']
    map_ch_coords_to_mne(evoked)
    new_coord = evoked.info['chs'][0]['loc']
    assert_true((old_coord != new_coord).any())
Esempio n. 5
0
def test_interpolate_missing():
    """Test interpolation of missing channels."""
    data_type = 'task_working_memory'
    raw = hcp.read_raw(data_type='task_working_memory', run_index=0,
                       **hcp_params)
    raw.load_data()
    n_chan = len(raw.ch_names)
    raw.drop_channels(['A1'])
    assert_equal(len(raw.ch_names), n_chan - 1)
    raw = interpolate_missing(raw, data_type=data_type, **hcp_params)
    assert_equal(len(raw.ch_names), n_chan)

    evoked = hcp.read_evokeds(data_type=data_type, **hcp_params)[0]
    assert_equal(len(evoked.ch_names), 243)
    evoked_int = interpolate_missing(evoked, data_type=data_type, **hcp_params)
    assert_equal(len(evoked_int.ch_names), 248)
def test_interpolate_missing():
    """Test interpolation of missing channels."""
    data_type = 'task_working_memory'
    raw = hcp.read_raw(data_type='task_working_memory',
                       run_index=0,
                       **hcp_params)
    raw.load_data()
    n_chan = len(raw.ch_names)
    raw.drop_channels(['A1'])
    assert_equal(len(raw.ch_names), n_chan - 1)
    raw = interpolate_missing(raw, data_type=data_type, **hcp_params)
    assert_equal(len(raw.ch_names), n_chan)

    evoked = hcp.read_evokeds(data_type=data_type, **hcp_params)[0]
    assert_equal(len(evoked.ch_names), 243)
    evoked_int = interpolate_missing(evoked, data_type=data_type, **hcp_params)
    assert_equal(len(evoked_int.ch_names), 248)
subject = '100307'  # our test subject
task = 'task_working_memory'
meg_sub_fol = op.join(MEG_DIR, subject)
fwd_fname = op.join(meg_sub_fol, '{}-fwd.fif'.format(subject))
inv_fname = op.join(meg_sub_fol, '{}-inv.fif'.format(subject))
noise_cov_fname = op.join(meg_sub_fol, '{}-noise-cov.fif'.format(subject, task))
stc_fname = op.join(meg_sub_fol, '{}-{}.stc'.format(subject, task))

n_jobs = 4
run_index = 0

##############################################################################
# We're reading the evoked data.
# These are the same as in :ref:`tut_plot_evoked`

hcp_evokeds = hcp.read_evokeds(onset='stim', subject=subject,
                                   data_type=task, HCP_DIR=HCP_DIR)
for evoked in hcp_evokeds:
    if not evoked.comment == 'Wrkmem_LM-TIM-face_BT-diff_MODE-mag':
        continue

##############################################################################
# We'll now use a convenience function to get our forward and source models
# instead of computing them by hand.

# src_outputs = hcp.anatomy.compute_forward_stack(
#     subject=subject, subjects_dir=subjects_dir,
#     HCP_DIR=HCP_DIR, recordings_path=recordings_path,
#     # speed up computations here. Setting `add_dist` to True may improve the
#     # accuracy.
#     src_params=dict(add_dist=False),
#     info_from=dict(data_type=task, run_index=run_index))
##############################################################################
# we assume our data is inside a designated folder under $HOME
storage_dir = op.expanduser('~/mne-hcp-data')
hcp_path = op.join(storage_dir, 'HCP')
recordings_path = op.join(storage_dir, 'hcp-meg')
subjects_dir = op.join(storage_dir, 'hcp-subjects')
subject = '105923'  # our test subject
data_type = 'task_working_memory'
run_index = 0

##############################################################################
# We're reading the evoked data.
# These are the same as in :ref:`tut_plot_evoked`

hcp_evokeds = hcp.read_evokeds(onset='stim', subject=subject,
                                   data_type=data_type, hcp_path=hcp_path)
for evoked in hcp_evokeds:
    if not evoked.comment == 'Wrkmem_LM-TIM-face_BT-diff_MODE-mag':
        continue

##############################################################################
# We'll now use a convenience function to get our forward and source models
# instead of computing them by hand.

src_outputs = hcp.anatomy.compute_forward_stack(
    subject=subject, subjects_dir=subjects_dir,
    hcp_path=hcp_path, recordings_path=recordings_path,
    # speed up computations here. Setting `add_dist` to True may improve the
    # accuracy.
    src_params=dict(add_dist=False),
    info_from=dict(data_type=data_type, run_index=run_index))
##############################################################################
# we assume our data is inside a designated folder under $HOME
storage_dir = op.expanduser('~/mne-hcp-data')
hcp_path = op.join(storage_dir, 'HCP')
recordings_path = op.join(storage_dir, 'hcp-meg')
subjects_dir = op.join(storage_dir, 'hcp-subjects')
subject = '105923'  # our test subject
data_type = 'task_working_memory'
run_index = 0

##############################################################################
# We're reading the evoked data.
# These are the same as in :ref:`tut_plot_evoked`

hcp_evokeds = hcp.read_evokeds(onset='stim', subject=subject,
                                   data_type=data_type, hcp_path=hcp_path)
for evoked in hcp_evokeds:
    if not evoked.comment == 'Wrkmem_LM-TIM-face_BT-diff_MODE-mag':
        continue

##############################################################################
# We'll now use a convenience function to get our forward and source models
# instead of computing them by hand.

src_outputs = hcp.anatomy.compute_forward_stack(
    subject=subject, subjects_dir=subjects_dir,
    hcp_path=hcp_path, recordings_path=recordings_path,
    # speed up computations here. Setting `add_dist` to True may improve the
    # accuracy.
    src_params=dict(add_dist=False),
    info_from=dict(data_type=data_type, run_index=run_index))
mne.set_log_level('WARNING')

##############################################################################
# we assume our data is inside a designated folder under $HOME
# and set the IO params

storage_dir = op.expanduser('~')

hcp_params = dict(hcp_path=op.join(storage_dir, 'mne-hcp-data', 'HCP'),
                  subject='105923',
                  data_type='task_working_memory')

##############################################################################
# we take the some evoked and create an interpolated copy

evoked = hcp.read_evokeds(**hcp_params)[0]

# The HCP pipelines don't interpolate missing channels
print('%i channels out of 248 expected' % len(evoked.ch_names))

evoked_interpolated = preproc.interpolate_missing(evoked, **hcp_params)

##############################################################################
# Let's visualize what has changed!

# we calculate the difference ...
bads = set(evoked_interpolated.ch_names) - set(evoked.ch_names)
print(bads)

# ... and mark the respective channels as bad ...
evoked_interpolated.info['bads'] += list(bads)
Esempio n. 11
0
    evoked.apply_baseline()
    evoked = preproc.interpolate_missing(evoked, **hcp_params)

    evokeds_from_epochs_hcp.append(evoked)


##############################################################################
# Finally we can read the actual official ERF file
#
# These are obtained from the 'eravg' pipelines.
# We read the matlab file, MNE-HCP is doing some conversions, and then we
# search our condition of interest. Here we're looking at the image as onset.
# and we want the average, not the standard deviation.

evoked_hcp = None
hcp_evokeds = hcp.read_evokeds(onset='stim', **hcp_params)

for ev in hcp_evokeds:
    if not ev.comment == 'Wrkmem_LM-TIM-face_BT-diff_MODE-mag':
        continue

# Once more we add and interpolate missing channels
evoked_hcp = preproc.interpolate_missing(ev, **hcp_params)


##############################################################################
# Time to compare the outputs
#

evoked = mne.combine_evoked(evokeds, weights='equal')
evoked_from_epochs_hcp = mne.combine_evoked(
Esempio n. 12
0
    evoked.apply_baseline()
    evoked = preproc.interpolate_missing(evoked, **hcp_params)

    evokeds_from_epochs_hcp.append(evoked)


##############################################################################
# Finally we can read the actual official ERF file
#
# These are obtained from the 'eravg' pipelines.
# We read the matlab file, MNE-HCP is doing some conversions, and then we
# search our condition of interest. Here we're looking at the image as onset.
# and we want the average, not the standard deviation.

evoked_hcp = None
hcp_evokeds = hcp.read_evokeds(onset='stim', **hcp_params)

for ev in hcp_evokeds:
    if not ev.comment == 'Wrkmem_LM-TIM-face_BT-diff_MODE-mag':
        continue

# Once more we add and interpolate missing channels
evoked_hcp = preproc.interpolate_missing(ev, **hcp_params)


##############################################################################
# Time to compare the outputs
#

evoked = mne.combine_evoked(evokeds, weights='equal')
evoked_from_epochs_hcp = mne.combine_evoked(