Esempio n. 1
0
def test_conf_int(X_y_linear_trend):

    HORIZON = 5
    X, y = X_y_linear_trend

    model = TBATS(use_arma_errors=False, use_box_cox=False)
    model_wrapped = TBATSWrapper(use_arma_errors=False,
                                 use_box_cox=False,
                                 conf_int=True,
                                 conf_int_level=0.95)
    model = model.fit(y[:-HORIZON])
    model_wrapped = model_wrapped.fit(X[:-HORIZON], y[:-HORIZON])

    preds_orig, conf_int = model.forecast(steps=HORIZON, confidence_level=0.95)
    preds = model_wrapped.predict(X[-HORIZON:])

    expected_result = (pd.DataFrame(
        preds_orig, index=X.index[-HORIZON:],
        columns=["TBATS"]).assign(TBATS_lower=conf_int["lower_bound"]).assign(
            TBATS_upper=conf_int["upper_bound"]))
    print("expected_result", expected_result)

    print("preds", preds)
    print("preds_orig", preds_orig)

    assert_frame_equal(preds, expected_result)
Esempio n. 2
0
def wrapper_instance(request):

    if request.param == "prophet":
        return ProphetWrapper(daily_seasonality=False,
                              weekly_seasonality=False,
                              yearly_seasonality=False)
    elif request.param == "smoothing":
        return ExponentialSmoothingWrapper(trend="add")
    elif request.param == "tbats":
        return TBATSWrapper(use_arma_errors=False, use_box_cox=False)
    elif request.param == "sklearn":
        return get_sklearn_wrapper(LinearRegression, lags=4)
    elif request.param == "sarimax":
        return SarimaxWrapper(order=(1, 1, 0), seasonal_order=(1, 1, 1, 2))
    elif request.param == "stacking_ensemble":
        return StackingEnsemble(
            base_learners=[
                ExponentialSmoothingWrapper(name="smoot_exp1", trend="add"),
                ExponentialSmoothingWrapper(name="smoot_exp2"),
            ],
            meta_model=LinearRegression(),
            horizons_as_features=False,
            weekdays_as_features=False,
        )
    elif request.param == "simple_ensemble":
        return SimpleEnsemble(base_learners=[
            ExponentialSmoothingWrapper(name="smoot_exp1", trend="add"),
            ExponentialSmoothingWrapper(name="smoot_exp2"),
        ])
Esempio n. 3
0
def pipeline_instance_model_only(request):

    if request.param == "prophet":
        return Pipeline([(
            "regressor",
            ProphetWrapper(
                daily_seasonality=False,
                weekly_seasonality=False,
                yearly_seasonality=False,
            ),
        )])
    elif request.param == "smoothing":
        return Pipeline([("regressor",
                          ExponentialSmoothingWrapper(trend="add"))])

    elif request.param == "tbats":
        return Pipeline([("regressor",
                          TBATSWrapper(use_arma_errors=False,
                                       use_box_cox=False))])

    elif request.param == "sklearn":
        return Pipeline([("regressor",
                          get_sklearn_wrapper(LinearRegression, lags=4))])

    elif request.param == "sarimax":
        return Pipeline([(
            "regressor",
            SarimaxWrapper(order=(1, 1, 0), seasonal_order=(1, 1, 1, 1)),
        )])

    elif request.param == "stacking_ensemble":
        return Pipeline([(
            "regressor",
            StackingEnsemble(
                base_learners=[
                    ExponentialSmoothingWrapper(name="smoot_exp1",
                                                trend="add"),
                    ExponentialSmoothingWrapper(name="smoot_exp2"),
                ],
                meta_model=LinearRegression(),
            ),
        )])

    elif request.param == "simple_ensemble":
        return Pipeline([(
            "regressor",
            SimpleEnsemble(base_learners=[
                ExponentialSmoothingWrapper(name="smoot_exp1", trend="add"),
                ExponentialSmoothingWrapper(name="smoot_exp2"),
            ]),
        )])
    else:
        return None
def estimators(request):
    if request.param is None:
        return ["no_estimator"]

    options = {
        "prophet": [(
            "prophet",
            ProphetWrapper(
                daily_seasonality=False,
                weekly_seasonality=False,
                yearly_seasonality=False,
            ),
        )],
        "sarimax": [("sarimax",
                     SarimaxWrapper(order=(1, 1, 1),
                                    seasonal_order=(1, 1, 1, 2)))],
        "smoothing": [("smoothing", ExponentialSmoothingWrapper())],
        "sklearn": [("sklearn", get_sklearn_wrapper(LinearRegression))],
        "tbats":
        [("tbats", TBATSWrapper(use_arma_errors=False, use_box_cox=False))],
        "stacking_ensemble": [(
            "stacking_ensemble",
            StackingEnsemble(
                base_learners=[
                    ExponentialSmoothingWrapper(name="smoot_exp1",
                                                trend="add"),
                    ExponentialSmoothingWrapper(name="smoot_exp2"),
                ],
                meta_model=LinearRegression(),
            ),
        )],
        "simple_ensemble": [(
            "simple_ensemble",
            SimpleEnsemble(base_learners=[
                ExponentialSmoothingWrapper(name="smoot_exp1", trend="add"),
                ExponentialSmoothingWrapper(name="smoot_exp2"),
            ]),
        )],
    }

    if "all" in request.param:
        models = []
        [models.extend(options[key]) for key in options]
        return models
    else:
        return options[request.param]
def get_gridsearch(
    frequency,
    horizon=10,
    n_splits=5,
    between_split_lag=None,
    scoring="neg_mean_absolute_error",
    country_code_column=None,
    country_code=None,
    holidays_days_before=0,
    holidays_days_after=0,
    holidays_bridge_days=False,
    sklearn_models=True,
    sklearn_models_optimize_for_horizon=False,
    autosarimax_models=False,
    autoarima_dict=None,
    prophet_models=False,
    tbats_models=False,
    exp_smooth_models=False,
    theta_models=False,
    average_ensembles=False,
    stacking_ensembles=False,
    stacking_ensembles_train_horizon=10,
    stacking_ensembles_train_n_splits=20,
    clip_predictions_lower=None,
    clip_predictions_upper=None,
    exog_cols=None,
):
    """Get grid search object based on selection criteria.

    Parameters
    ----------
    frequency : str
        Frequency of timeseries. Pandas compatible frequncies

    horizon : int
        How many units of frequency (e.g. 4 quarters), should be used to find the best models

    n_splits : int
        How many cross-validation folds should be used in model selection

    between_split_lag : int
        How big lag of observations should cv_splits have
        If kept as None, horizon is used resulting in non-overlaping cv_splits

    scoring : str, callable
        String of sklearn regression metric name, or hcrystalball compatible scorer. For creation
        of hcrystalball compatible scorer use `make_ts_scorer` function.

    country_code_column : str, list
        Column(s) in data, that contain country code in str (e.g. 'DE'). Used in holiday transformer.
        Only one of `country_code_column` or `country_code` can be set.

    country_code : str, list
        Country code(s) in str (e.g. 'DE'). Used in holiday transformer.
        Only one of `country_code_column` or `country_code` can be set.

    holidays_days_before : int
        Number of days before the holiday which will be taken into account
        (i.e. 2 means that new bool column will be created and will be True for 2 days before holidays,
        otherwise False)

    holidays_days_after : int
        Number of days after the holiday which will be taken into account
        (i.e. 2 means that new bool column will be created and will be True for 2 days after holidays,
        otherwise False)

    holidays_bridge_days : bool
        Overlaping `holidays_days_before` and `holidays_days_after` feature which serves for modeling between
        holidays working days

    sklearn_models : bool
        Whether to consider sklearn models

    sklearn_models_optimize_for_horizon: bool
        Whether to add to default sklearn behavior also models, that optimize predictions for each horizon

    autosarimax_models : bool
        Whether to consider auto sarimax models

    autoarima_dict : dict
        Specification of pmdautoarima search space

    prophet_models : bool
        Whether to consider FB prophet models

    exp_smooth_models : bool
        Whether to consider exponential smoothing models

    average_ensembles : bool
        Whether to consider average ensemble models

    stacking_ensembles : bool
        Whether to consider stacking ensemble models

    stacking_ensembles_train_horizon : int
        Which horizon should be used in meta model in stacking ensembles

    stacking_ensembles_train_n_splits : int
        Number of splits used in meta model in stacking ensembles

    clip_predictions_lower : float, int
        Minimal number allowed in the predictions

    clip_predictions_upper : float, int
        Maximal number allowed in the predictions

    exog_cols : list
        List of columns to be used as exogenous variables

    Returns
    -------
    sklearn.model_selection.GridSearchCV
        CV / Model selection configuration
    """
    exog_cols = exog_cols or []
    country_code_columns = ([country_code_column] if isinstance(
        country_code_column, str) else country_code_column)
    country_codes = [country_code] if isinstance(country_code,
                                                 str) else country_code

    # ensures only exogenous columns and country code column will be passed to model if provided
    # and columns names will be stored in TSColumnTransformer
    if exog_cols:
        cols = exog_cols + country_code_columns if country_code_columns else exog_cols
        exog_passthrough = TSColumnTransformer(transformers=[("raw_cols",
                                                              "passthrough",
                                                              cols)])
    else:
        exog_passthrough = "passthrough"
    # ensures holiday transformer is added to the pipeline if requested
    if country_codes:
        holiday = Pipeline([(
            f"holiday_{code}",
            HolidayTransformer(
                country_code=code,
                days_before=holidays_days_before,
                days_after=holidays_days_after,
                bridge_days=holidays_bridge_days,
            ),
        ) for code in country_codes])
    elif country_code_columns:
        holiday = Pipeline([(
            f"holiday_{col}",
            HolidayTransformer(
                country_code_column=col,
                days_before=holidays_days_before,
                days_after=holidays_days_after,
                bridge_days=holidays_bridge_days,
            ),
        ) for col in country_code_columns])
    else:
        holiday = "passthrough"

    estimator = Pipeline([("exog_passthrough", exog_passthrough),
                          ("holiday", holiday), ("model", "passthrough")])

    cv = FinerTimeSplit(n_splits=n_splits,
                        horizon=horizon,
                        between_split_lag=between_split_lag)

    grid_search = GridSearchCV(
        estimator=estimator,
        param_grid=[],
        scoring=get_scorer(scoring),
        cv=cv,
        refit=False,
        error_score=np.nan,
    )

    if autosarimax_models:
        # adding autosarimax to param_grid might cause differently found models
        # for different splits and raise inconsistency based errors.
        # sarimax pipeline is added to new grid_search's attribute (`grid_search.autosarimax`)
        # and handled in `hcrystalball.model_seleciton.select_model` function in following way
        # 1. get best model for the data part on last split
        # 2. append this best model to original `param_grid`
        # 3. run full grid search with `param_grid` containing
        #    sarimax model selected from autosarimax in point 1
        from hcrystalball.wrappers import SarimaxWrapper

        if autoarima_dict is None:
            autoarima_dict = {}
        if "error_action" not in autoarima_dict:
            autoarima_dict.update({"error_action": "raise"})

        grid_search.autosarimax = Pipeline(estimator.steps[:-1])
        grid_search.autosarimax.steps.append((
            "model",
            SarimaxWrapper(
                init_with_autoarima=True,
                autoarima_dict=autoarima_dict,
                clip_predictions_lower=clip_predictions_lower,
                clip_predictions_upper=clip_predictions_upper,
            ),
        ))

    if stacking_ensembles or average_ensembles or sklearn_models:
        from sklearn.linear_model import ElasticNet
        from sklearn.ensemble import RandomForestRegressor

        # TODO when scoring time is fixed, add HistGradientBoostingRegressor
        # from sklearn.experimental import enable_hist_gradient_boosting
        # from sklearn.ensemble import HistGradientBoostingRegressor
        from hcrystalball.wrappers import get_sklearn_wrapper
        from hcrystalball.feature_extraction import SeasonalityTransformer

        sklearn_model = get_sklearn_wrapper(
            RandomForestRegressor,
            clip_predictions_lower=clip_predictions_lower,
            clip_predictions_upper=clip_predictions_upper,
        )

        sklearn_model_pipeline = Pipeline([
            ("seasonality", SeasonalityTransformer(auto=True, freq=frequency)),
            ("model", sklearn_model)
        ])
        # TODO make sure naming here works as expected
        sklearn_model_pipeline.name = f"seasonality_{sklearn_model.name}"

    if sklearn_models:
        classes = [ElasticNet, RandomForestRegressor]
        models = {
            model_class.__name__: get_sklearn_wrapper(
                model_class,
                clip_predictions_lower=clip_predictions_lower,
                clip_predictions_upper=clip_predictions_upper,
            )
            for model_class in classes
        }

        optimize_for_horizon = [
            False, True
        ] if sklearn_models_optimize_for_horizon else [False]

        grid_search.param_grid.append({
            "model": [sklearn_model_pipeline],
            "model__seasonality__weekly": [True, False],
            "model__model":
            list(models.values()),
            # TODO change add once HistGradientBoostingRegressor is back
            # "model__model": list(models.values()) + [sklearn_model]
            "model__model__optimize_for_horizon":
            optimize_for_horizon,
            "model__model__lags": [3, 7, 10, 14],
        })

        grid_search.param_grid.append({
            "model": [sklearn_model_pipeline],
            "model__seasonality__weekly": [True, False],
            "model__model__optimize_for_horizon":
            optimize_for_horizon,
            "model__model": [sklearn_model],
            "model__model__max_depth": [6],
        })

    if prophet_models:
        from hcrystalball.wrappers import ProphetWrapper

        extra_regressors = [None] if exog_cols is None else [None, exog_cols]

        grid_search.param_grid.append({
            "model": [
                ProphetWrapper(
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ],
            "model__seasonality_mode": ["multiplicative", "additive"],
            "model__extra_regressors":
            extra_regressors,
        })

        grid_search.param_grid.append({
            "model": [
                ProphetWrapper(
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ],
            "model__extra_seasonalities": [[{
                "name": "quarterly",
                "period": 90.0625,
                "fourier_order": 5,
                "prior_scale": 15.0,
                "mode": None,
            }]],
            "model__extra_regressors":
            extra_regressors,
        })

    if exp_smooth_models:
        from hcrystalball.wrappers import ExponentialSmoothingWrapper
        from hcrystalball.wrappers import HoltSmoothingWrapper
        from hcrystalball.wrappers import SimpleSmoothingWrapper

        # commented options show non deterministic behavior
        grid_search.param_grid.append({
            "model": [
                ExponentialSmoothingWrapper(
                    freq=frequency,
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ],
            "model__trend": ["add"],
            "model__seasonal": [None, "add"],
            "model__damped": [True, False],
            "model__fit_params": [
                {
                    "use_boxcox": True,
                    "use_basinhopping": False
                },
                # {'use_boxcox':True, 'use_basinhopping':True},
                {
                    "use_boxcox": False,
                    "use_basinhopping": False
                },
                # {'use_boxcox':False, 'use_basinhopping':True}
            ],
        })

        grid_search.param_grid.append({
            "model": [
                ExponentialSmoothingWrapper(
                    freq=frequency,
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ],
            "model__trend": ["add"],
            "model__seasonal": ["mul"],
            "model__damped": [True, False],
            "model__fit_params": [
                {
                    "use_boxcox": False,
                    "use_basinhopping": False
                },
                # {'use_boxcox':False, 'use_basinhopping':True}
            ],
        })

        grid_search.param_grid.append({
            "model": [
                ExponentialSmoothingWrapper(
                    freq=frequency,
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ],
            "model__trend": [None],
            "model__seasonal": [None, "add", "mul"],
            "model__damped": [False],
            "model__fit_params": [
                {
                    "use_boxcox": False,
                    "use_basinhopping": False
                },
                # {'use_boxcox':False, 'use_basinhopping':True}
            ],
        })

        grid_search.param_grid.append({
            "model": [
                SimpleSmoothingWrapper(
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                ),
                HoltSmoothingWrapper(
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                ),
            ]
        })

    if theta_models:
        from hcrystalball.wrappers import ThetaWrapper

        grid_search.param_grid.append({
            "model": [
                ThetaWrapper(
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ]
        })

    if tbats_models:
        from hcrystalball.wrappers import TBATSWrapper

        grid_search.param_grid.append({
            "model": [
                TBATSWrapper(
                    use_arma_errors=False,
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ]
        })

    if stacking_ensembles:
        from hcrystalball.ensemble import StackingEnsemble
        from hcrystalball.wrappers import ProphetWrapper
        from hcrystalball.wrappers import ThetaWrapper
        from sklearn.ensemble import RandomForestRegressor

        grid_search.param_grid.append({
            "model": [
                StackingEnsemble(
                    train_n_splits=stacking_ensembles_train_n_splits,
                    train_horizon=stacking_ensembles_train_horizon,
                    meta_model=ElasticNet(),
                    horizons_as_features=True,
                    weekdays_as_features=True,
                    base_learners=[],
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ],
            "model__meta_model": [ElasticNet(),
                                  RandomForestRegressor()],
            "model__base_learners": [
                [
                    ProphetWrapper(
                        clip_predictions_lower=clip_predictions_lower,
                        clip_predictions_upper=clip_predictions_upper,
                    ),
                    sklearn_model_pipeline,
                    ThetaWrapper(
                        clip_predictions_lower=clip_predictions_lower,
                        clip_predictions_upper=clip_predictions_upper,
                    ),
                ],
            ],
        })
    if average_ensembles:
        from hcrystalball.ensemble import SimpleEnsemble
        from hcrystalball.wrappers import ProphetWrapper
        from hcrystalball.wrappers import ThetaWrapper

        grid_search.param_grid.append({
            "model": [
                SimpleEnsemble(
                    base_learners=[],
                    clip_predictions_lower=clip_predictions_lower,
                    clip_predictions_upper=clip_predictions_upper,
                )
            ],
            "model__base_learners": [
                [
                    ProphetWrapper(
                        clip_predictions_lower=clip_predictions_lower,
                        clip_predictions_upper=clip_predictions_upper,
                    ),
                    sklearn_model_pipeline,
                    ThetaWrapper(
                        clip_predictions_lower=clip_predictions_lower,
                        clip_predictions_upper=clip_predictions_upper,
                    ),
                ],
            ],
        })

    return grid_search
Esempio n. 6
0
def wrapper_instance_capped(request):
    if request.param.split(";")[0] == "prophet":
        return ProphetWrapper(
            daily_seasonality=False,
            weekly_seasonality=False,
            yearly_seasonality=False,
            clip_predictions_lower=float(request.param.split(";")[1]),
            clip_predictions_upper=float(request.param.split(";")[2]),
        )
    elif request.param.split(";")[0] == "smoothing":
        return ExponentialSmoothingWrapper(
            trend="add",
            clip_predictions_lower=float(request.param.split(";")[1]),
            clip_predictions_upper=float(request.param.split(";")[2]),
        )
    elif request.param.split(";")[0] == "tbats":
        return TBATSWrapper(
            use_arma_errors=False,
            use_box_cox=False,
            clip_predictions_lower=float(request.param.split(";")[1]),
            clip_predictions_upper=float(request.param.split(";")[2]),
        )
    elif request.param.split(";")[0] == "sklearn":
        return get_sklearn_wrapper(
            LinearRegression,
            lags=4,
            clip_predictions_lower=float(request.param.split(";")[1]),
            clip_predictions_upper=float(request.param.split(";")[2]),
        )
    elif request.param.split(";")[0] == "sarimax":
        return SarimaxWrapper(
            order=(1, 1, 0),
            seasonal_order=(1, 1, 1, 2),
            clip_predictions_lower=float(request.param.split(";")[1]),
            clip_predictions_upper=float(request.param.split(";")[2]),
        )
    elif request.param.split(";")[0] == "stacking_ensemble":
        return StackingEnsemble(
            base_learners=[
                ExponentialSmoothingWrapper(
                    name="smoot_exp1",
                    trend="add",
                    clip_predictions_lower=float(request.param.split(";")[1]),
                    clip_predictions_upper=float(request.param.split(";")[2]),
                ),
                ExponentialSmoothingWrapper(
                    name="smoot_exp2",
                    clip_predictions_lower=float(request.param.split(";")[1]),
                    clip_predictions_upper=float(request.param.split(";")[2]),
                ),
            ],
            meta_model=LinearRegression(),
            horizons_as_features=False,
            weekdays_as_features=False,
            train_n_splits=1,
            train_horizon=10,
            clip_predictions_lower=float(request.param.split(";")[1]),
            clip_predictions_upper=float(request.param.split(";")[2]),
        )
    elif request.param.split(";")[0] == "simple_ensemble":
        return SimpleEnsemble(base_learners=[
            ExponentialSmoothingWrapper(
                name="smoot_exp1",
                trend="add",
                clip_predictions_lower=float(request.param.split(";")[1]),
                clip_predictions_upper=float(request.param.split(";")[2]),
            ),
            ExponentialSmoothingWrapper(
                name="smoot_exp2",
                clip_predictions_lower=float(request.param.split(";")[1]),
                clip_predictions_upper=float(request.param.split(";")[2]),
            ),
        ])