Esempio n. 1
0
 def test_HDDMTruncated_distributions(self):
     params = hddm.generate.gen_rand_params()
     data, params_subj = hddm.generate.gen_rand_data(subjs=4, params=params)
     m = hddm.HDDMTruncated(data)
     m.sample(self.iter, burn=self.burn)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['v'], pm.Normal)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['v'].parents['mu'], pm.Normal)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['v'].parents['tau'], pm.Deterministic)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['v'].parents['tau'].parents['x'], pm.Uniform)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['a'], pm.TruncatedNormal)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['a'].parents['mu'], pm.Uniform)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['a'].parents['tau'], pm.Deterministic)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['a'].parents['tau'].parents['x'], pm.Uniform)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['t'], pm.TruncatedNormal)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['t'].parents['tau'], pm.Deterministic)
     assert isinstance(m.nodes_db.ix['wfpt.0']['node'].parents['t'].parents['tau'].parents['x'], pm.Uniform)
Esempio n. 2
0
 def test_HDDMTruncated_distributions(self):
     params = hddm.generate.gen_rand_params()
     data, params_subj = hddm.generate.gen_rand_data(subjs=4,
                                                     params=params,
                                                     size=10)
     m = hddm.HDDMTruncated(data)
     m.sample(self.iter, burn=self.burn)
     self.assertIsInstance(m.nodes_db.loc["wfpt.0"]["node"].parents["v"],
                           pm.Normal)
     self.assertIsInstance(
         m.nodes_db.loc["wfpt.0"]["node"].parents["v"].parents["mu"],
         pm.Normal)
     self.assertIsInstance(
         m.nodes_db.loc["wfpt.0"]["node"].parents["v"].parents["tau"],
         pm.Deterministic,
     )
     self.assertIsInstance(
         m.nodes_db.loc["wfpt.0"]
         ["node"].parents["v"].parents["tau"].parents["x"],
         pm.Uniform,
     )
     self.assertIsInstance(m.nodes_db.loc["wfpt.0"]["node"].parents["a"],
                           pm.TruncatedNormal)
     self.assertIsInstance(
         m.nodes_db.loc["wfpt.0"]["node"].parents["a"].parents["mu"],
         pm.Uniform)
     self.assertIsInstance(
         m.nodes_db.loc["wfpt.0"]["node"].parents["a"].parents["tau"],
         pm.Deterministic,
     )
     self.assertIsInstance(
         m.nodes_db.loc["wfpt.0"]
         ["node"].parents["a"].parents["tau"].parents["x"],
         pm.Uniform,
     )
     self.assertIsInstance(m.nodes_db.loc["wfpt.0"]["node"].parents["t"],
                           pm.TruncatedNormal)
     self.assertIsInstance(
         m.nodes_db.loc["wfpt.0"]["node"].parents["t"].parents["tau"],
         pm.Deterministic,
     )
     self.assertIsInstance(
         m.nodes_db.loc["wfpt.0"]
         ["node"].parents["t"].parents["tau"].parents["x"],
         pm.Uniform,
     )
Esempio n. 3
0
def check_outlier_model(seed=None, p_outlier=0.05):
    """Estimate data which contains outliers"""

    if seed is not None:
        np.random.seed(seed)

    #generate params and data
    params_true = hddm.generate.gen_rand_params(include=())
    data, temp = hddm.generate.gen_rand_data(size=500, params=params_true)
    data = pd.DataFrame(data)

    #generating outliers
    n_outliers = int(len(data) * p_outlier)
    outliers = data[:n_outliers].copy()
    #fast outliers
    outliers.rt[:n_outliers // 2] = np.random.rand(
        n_outliers // 2) * (min(abs(data['rt'])) - 0.11) + 0.11
    #slow outliers
    outliers.rt[n_outliers //
                2:] = np.random.rand(n_outliers - n_outliers // 2) * 2 + max(
                    abs(data['rt']))
    outliers.response = np.random.randint(0, 2, n_outliers)
    print("generating %d outliers. %f of the dataset" %
          (n_outliers, float(n_outliers) / (n_outliers + len(data))))
    print("%d outliers are fast" % sum(outliers.rt < min(data.rt)))
    print("%d outliers are slow" % sum(outliers.rt > max(data.rt)))

    #Estimating the data without outliers. this is the best estimation we could get
    #from this data
    hm = hddm.HDDMTruncated(data)
    hm.map()
    index = ['true', 'estimated']
    best_estimate = hm.values
    df = pd.DataFrame([params_true, hm.values], index=index,
                      dtype=np.float).dropna(1)
    print("benchmark: MAP of clean data. This is as good as we can get")
    print(df)

    #combine data with outliers
    data = pd.concat((data, outliers), ignore_index=True)

    #estimate the data with outlier, to confirm that it is worse
    hm = hddm.HDDMTruncated(data)
    hm.map()
    index = ['best_estimate', 'this_estimate']
    df = pd.DataFrame([best_estimate, hm.values], index=index,
                      dtype=np.float).dropna(1)
    print("MAP with outliers: This is as bas as we can get")
    print(df)

    #MAP with p_outlier as random variable
    hm = hddm.HDDMTruncated(data, include='p_outlier')
    hm.map()
    df = pd.DataFrame([best_estimate, hm.values], index=index, dtype=np.float)
    df.ix['best_estimate']['p_outlier'] = 0
    print("MAP with random p_outlier (Estimated from the data)")
    print(df.dropna(1))

    #MAP with fixed p_outlier
    fixed_p_outlier = 0.1
    hm = hddm.HDDMTruncated(data, p_outlier=fixed_p_outlier)
    hm.map()
    df = pd.DataFrame([best_estimate, hm.values], index=index, dtype=np.float)
    print("MAP with fixed p_outlier (%.3f) " % fixed_p_outlier)
    print(df.dropna(1))

    #Chi-square
    hm = hddm.HDDMTruncated(data)
    hm.optimize(method='chisquare')
    df = pd.DataFrame([best_estimate, hm.values], index=index,
                      dtype=np.float).dropna(1)
    print("Chisquare method")
    print(df)

    return data
Esempio n. 4
0
 def init_model(self, data):
     self.model = hddm.HDDMTruncated(data,
                                     group_only_nodes=['sz', 'st', 'sv'],
                                     **self.init_kwargs)
Esempio n. 5
0
 def init_model(self, data):
     self.model = hddm.HDDMTruncated(data, **self.init_kwargs)