Esempio n. 1
0
import cv2 as cv
import numpy as np
from hdf5manager import hdf5manager as h5
import matplotlib.cm as cm

pMatrix = h5("Outputs/P5_MatrixData_full_interp.hdf5").load()['pMatrix']
cv.namedWindow('image')


def callback(x):
    cutoff = x / 1000
    print("Cutoff:", cutoff)

    img = np.zeros((pMatrix.shape[0], pMatrix.shape[1], 3), dtype="uint8")
    mult = 2

    # preMatrix = np.zeros_like(pMatrix, dtype=bool)
    # preMatrix[pMatrix < cutoff] = True
    # preMatrix[pMatrix > 1 - cutoff] = True

    # fullImg = np.empty((preMatrix.shape[0] * 2, preMatrix.shape[1] * 3), dtype='uint8')
    # btmX = 0
    # btmY = 0
    # topY = preMatrix.shape[0]
    # for i in range(1, 4):
    # 	topX = btmX + preMatrix.shape[1]
    # 	fullImg[btmY:topY, btmX:topX] = preMatrix[:,:,i]
    # 	btmX = topX

    # btmY = topY
    # topY = btmY + preMatrix.shape[0]
Esempio n. 2
0
from hdf5manager import hdf5manager as h5
import numpy as np
import cv2 as cv
import time
import math

f = h5("mouse_vectors.hdf5").load()
contour_data = f["contour_data"].astype("int32")
n_contours = f["n_contours"]

mv = np.empty((contour_data.shape[0], 480, 640, 3), dtype='uint8')
prev_frame = contour_data[0, :n_contours[0]]

for i in range(contour_data.shape[0]):
    n = n_contours[i]

    for x, y in contour_data[i, :n]:
        min_v = (0, 0)
        min_dist = (1000**2) * 2
        min_pos = (0, 0)
        for x2, y2 in prev_frame:
            dx = x2 - x
            dy = y2 - y
            dist = dx * dx + dy * dy
            if (dist < min_dist):
                min_dist = dist
                min_v = (dx, dy)
                min_pos = (x2, y2)

        cv.line(mv[i], (x, y), (x + min_v[0], y + min_v[1]), (0, 255, 0))
        cv.circle(mv[i], min_pos, 3, (0, 0, 255), -1)
Esempio n. 3
0
import time
import numpy as np
from matplotlib import pyplot as plt
from hdf5manager import hdf5manager as h5
from derivativeEventDetection import detectSpikes
from eventCharacterization import eventCharacterization

f = h5("P2_timecourses.hdf5").load()
brain_data = f["brain"]

numRows = brain_data.shape[0]
batches = 10000
na = 140
nb = 115

all_start_spikes = []
all_end_spikes = []
total_start_events = 0
total_end_events = 0

for i in range(numRows):
	print("Doing timecourse number " + str(i))
	dataRow = brain_data[i]
	start_spikes, end_spikes, vals = detectSpikes(dataRow, -0.3)
	
	total_start_events += start_spikes.shape[0]
	total_end_events += end_spikes.shape[0]
	all_start_spikes.append(start_spikes)
	all_end_spikes.append(end_spikes)

t = time.clock()
Esempio n. 4
0
    ap.add_argument(
        '-f',
        '--data_filename',
        nargs=1,
        required=True,
        help=
        'name of hdf5 input file with ICA-filtered timecourses and domain map')
    ap.add_argument('-t',
                    '--trigger',
                    action="store_true",
                    required=False,
                    help='generate the lookup table')

    args = vars(ap.parse_args())

    f = h5(args['coincidence_filename'][0])
    data = f.load()
    eventMatrix = data['eventMatrix']

    maxRates = np.ones(eventMatrix.shape[0])
    minRates = np.zeros(eventMatrix.shape[0])

    pMatrix = data['pMatrix']

    f2 = h5(args['data_filename'][0])
    data2 = f2.load()
    domain_map = data2['domainmap']

    if (args['trigger']):
        trigger = True
Esempio n. 5
0
from hdf5manager import hdf5manager as h5
import numpy as np
import cv2 as cv
import time
import math

f = h5("new_mouse_vectors.hdf5").load()
f_bl = f["bl"].astype("int64")
f_br = f["br"].astype("int64")
f_fl = f["fl"].astype("int64")
f_fr = f["fr"].astype("int64")
feet = [f_bl, f_br, f_fl, f_fr]

mv = np.empty((f_bl.shape[0], 480, 640, 3), dtype='uint8')

for f in feet:
    for i in range(f.shape[0]):
        x, y = f[i]
        cv.circle(mv[i], (x, y), 3, (255, 0, 0), -1)

print("Playing Movie")
print("Blue means new, Red means old")
cv.namedWindow("Dots")
fps = 30
frame_dt = 1.0 / fps
mv_i = 0
pause = False

while True:
    if mv_i >= mv.shape[0]:
        mv_i = 0
Esempio n. 6
0
from hdf5manager import hdf5manager as h5
import cv2 as cv2
import numpy as np

domain_map = h5("P2_timecourses.hdf5").load()["domainmap"]


def interpAxis(contour, interp_x):
    contour = contour[:, 0]

    if interp_x:
        xs = contour[:, 0]
        ys = contour[:, 1]
    else:
        xs = contour[:, 1]
        ys = contour[:, 0]

    xs_interp = xs.tolist()
    ys_interp = ys.tolist()

    sz = xs.shape[0]
    i = 1
    while i < sz:
        dif = xs_interp[i] - xs_interp[i - 1]
        new_x = 0

        if dif < -1:
            new_x = xs_interp[i - 1] - 1
        elif dif > 1:
            new_x = xs_interp[i - 1] + 1
        else:
Esempio n. 7
0
    for path in pathlist:
        print('\n\n\tWorking on ' + path)

        #find the average movtion vectors
        if path.endswith('videodata.hdf5'):
            print('Input found:')
            print('\t' + path)
            assert os.path.exists(path), 'Videodata file was not found!'
            print('Processing file:', path)
            #
            # assert path.endswith('videodata.hdf5'), "Path did not end in 'videodata.hdf5'"
            print(
                '\nLoading videodata to create classifier metrics\n------------------------------------------------'
            )
            f = h5(path)
            print('\t loading dfof mean')
            dfof = f.load('dfof_mean')

        if path.endswith('OpticFlow.hdf5'):
            assert os.path.exists(path), 'opticFlow file was not found!'
            assert path.endswith(
                '.hdf5'), 'Unknown data type.  Please load .hdf5 only'
            print('Input found:')
            print('\t' + path)

            print('Processing file:', path)
            if path.endswith('.hdf5'):
                # assert path.endswith('opticFlow.hdf5'), "Path did not end in 'opticFlow.hdf5'"
                savepath = path.replace('.hdf5', '_metrics.csv')
                base = os.path.basename(path)
Esempio n. 8
0
import time, math, sys

try:
    path_file = open("path.txt", "r")
    sys.path.append(path_file.read())
    path_file.close()
except:
    print("Can't import, path.txt doesn't exist")
    pass

import fileManager as fm

experimentName = "180807_01"
vid_name = experimentName + "_result"

f = h5("mouse_vectors_" + experimentName + ".hdf5").load()
f_write = h5("new_mouse_vectors_" + experimentName + ".hdf5")
contour_data = f["contour_data"].astype("int32")
n_contours = f["n_contours"]

names = ["bl", "br", "fl", "fr", "t"]
write_dict = {
    "bl": np.empty((contour_data.shape[0], 2)),
    "br": np.empty((contour_data.shape[0], 2)),
    "fl": np.empty((contour_data.shape[0], 2)),
    "fr": np.empty((contour_data.shape[0], 2)),
    "t": np.empty((contour_data.shape[0], 2))
}

stds = f["stds"]
max_std = np.max(stds)