def predict(image):

    image = image_loader(image=image)

    BACKBONE = IR_50(INPUT_SIZE)
    HEAD = ArcFace(in_features=EMBEDDING_SIZE,
                   out_features=1000,
                   device_id=GPU_ID)

    BACKBONE = BACKBONE.to(DEVICE)
    HEAD = HEAD.to(DEVICE)

    BACKBONE.load_state_dict(
        torch.load('./trained_model/Backbone_IR_50_ArcFace_30.pth'))
    HEAD.load_state_dict(
        torch.load('./trained_model/Head_IR_50_ArcFace_30.pth'))

    BACKBONE.eval()
    HEAD.eval()

    image = image.to(DEVICE)
    bs, ncrops, c, h, w = image.size()
    inputs = image.view(-1, c, h, w)
    features = BACKBONE(inputs)
    outputs = HEAD(features, None)
    outputs = outputs.view(bs, ncrops, -1).mean(1)
    top_probs, top_labs = outputs.data.topk(1)
    top_labs = top_labs.cpu().numpy()
    top_probs = top_probs.cpu().numpy()
    return int(top_labs), float(top_probs)
Esempio n. 2
0
 def __init__(self, device, head_name = cfg['HEAD_NAME'], NUM_CLASS = cfg['NUM_CLASS'], GPU_ID = cfg['GPU_ID'], EMBEDDING_SIZE = cfg['EMBEDDING_SIZE'], HEAD_RESUME_ROOT = cfg['HEAD_RESUME_ROOT']):
     super().__init__()
     HEAD_DICT = {'ArcFace': ArcFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
             'CosFace': CosFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
             'SphereFace': SphereFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
             'Am_softmax': Am_softmax(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)}
     self.device = device
     self.head = HEAD_DICT[head_name]
     self.head.load_state_dict(torch.load(HEAD_RESUME_ROOT))
     self.head = self.head.to(device)
Esempio n. 3
0
		BACKBONE = shufflenetv2(cfg=cfg)
	elif BACKBONE_NAME == 'Mobilenet':
		BACKBONE = mobilenet()
	elif BACKBONE_NAME == 'Mobilenetv2':
		BACKBONE = mobilenetv2()
	elif BACKBONE_NAME == 'mobileface':
		BACKBONE = mobileface()
	else:
		raise NotImplementedError
	print("=" * 60)
	print(BACKBONE)
	print("{} Backbone Generated".format(BACKBONE_NAME))
	print("=" * 60)

	if HEAD_NAME == 'ArcFace':
		HEAD = ArcFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	elif HEAD_NAME == 'CosFace':
		HEAD = CosFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	elif HEAD_NAME == 'SphereFace':
		HEAD = SphereFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	elif HEAD_NAME == 'Am_softmax':
		HEAD = Am_softmax(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	elif HEAD_NAME == 'Softmax':
		HEAD = Softmax(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	else:
		raise NotImplementedError
	print("=" * 60)
	print(HEAD)
	print("{} Head Generated".format(HEAD_NAME))
	print("=" * 60)
Esempio n. 4
0
        'IR_50': IR_50(INPUT_SIZE),
        'IR_101': IR_101(INPUT_SIZE),
        'IR_152': IR_152(INPUT_SIZE),
        'IR_SE_50': IR_SE_50(INPUT_SIZE),
        'IR_SE_101': IR_SE_101(INPUT_SIZE),
        'IR_SE_152': IR_SE_152(INPUT_SIZE)
    }
    BACKBONE = BACKBONE_DICT[BACKBONE_NAME]
    print("=" * 60)
    print(BACKBONE)
    print("{} Backbone Generated".format(BACKBONE_NAME))
    print("=" * 60)

    HEAD_DICT = {
        'ArcFace':
        ArcFace(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
        'CosFace':
        CosFace(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
        'SphereFace':
        SphereFace(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
        'Am_softmax':
        Am_softmax(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS)
    }
    HEAD = HEAD_DICT[HEAD_NAME]
    print("=" * 60)
    print(HEAD)
    print("{} Head Generated".format(HEAD_NAME))
    print("=" * 60)

    LOSS_DICT = {'Focal': FocalLoss(), 'Softmax': nn.CrossEntropyLoss()}
    LOSS = LOSS_DICT[LOSS_NAME]
Esempio n. 5
0
        'IR_SE_101': IR_SE_101(INPUT_SIZE),
        'IR_SE_152': IR_SE_152(INPUT_SIZE)
    }
    BACKBONE = BACKBONE_DICT[BACKBONE_NAME]
    if BACKBONE_NAME == 'ppResNet_50' and USE_PRETRAINED:
        pretrained_weight = download()
        load_weight(model=BACKBONE, weight_path=pretrained_weight)

    logger.info("=" * 60)
    # logger.info(BACKBONE)
    logger.info("{} Backbone Generated".format(BACKBONE_NAME))
    logger.info("=" * 60)

    HEAD_DICT = {
        'ArcFace':
        ArcFace(embedding_size=EMBEDDING_SIZE, class_dim=NUM_CLASS),
        'CosFace':
        CosFace(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
        'SphereFace':
        SphereFace(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
        'Am_softmax':
        Am_softmax(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
        'Softmax':
        Softmax(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS)
    }
    HEAD = HEAD_DICT[HEAD_NAME]
    logger.info("=" * 60)
    # logger.info(HEAD)
    logger.info("{} Head Generated".format(HEAD_NAME))
    logger.info("=" * 60)
		BACKBONE = shufflenetv2(cfg=cfg)
	elif BACKBONE_NAME == 'Mobilenet':
		BACKBONE = mobilenet()
	elif BACKBONE_NAME == 'Mobilenetv2':
		BACKBONE = mobilenetv2()
	elif BACKBONE_NAME == 'mobileface':
		BACKBONE = mobileface()
	else:
		raise NotImplementedError
	print("=" * 60)
	print(BACKBONE)
	print("{} Backbone Generated".format(BACKBONE_NAME))
	print("=" * 60)

	if HEAD_NAME == 'ArcFace':
		HEAD = ArcFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	elif HEAD_NAME == 'CosFace':
		HEAD = CosFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	elif HEAD_NAME == 'SphereFace':
		HEAD = SphereFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	elif HEAD_NAME == 'Am_softmax':
		HEAD = Am_softmax(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	elif HEAD_NAME == 'Softmax':
		HEAD = Softmax(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)
	else:
		raise NotImplementedError
	print("=" * 60)
	print(HEAD)
	print("{} Head Generated".format(HEAD_NAME))
	print("=" * 60)
Esempio n. 7
0
        'IR_101': IR_101(INPUT_SIZE),
        'IR_152': IR_152(INPUT_SIZE),
        'IR_SE_50': IR_SE_50(INPUT_SIZE),
        'IR_SE_101': IR_SE_101(INPUT_SIZE),
        'IR_SE_152': IR_SE_152(INPUT_SIZE)
    }
    BACKBONE = BACKBONE_DICT[BACKBONE_NAME]
    print("=" * 60)
    print(BACKBONE)
    print("{} Backbone Generated".format(BACKBONE_NAME))
    print("=" * 60)

    HEAD_DICT = {
        'ArcFace':
        ArcFace(in_features=EMBEDDING_SIZE,
                out_features=NUM_CLASS,
                device_id=GPU_ID),
        'CosFace':
        CosFace(in_features=EMBEDDING_SIZE,
                out_features=NUM_CLASS,
                device_id=GPU_ID),
        'SphereFace':
        SphereFace(in_features=EMBEDDING_SIZE,
                   out_features=NUM_CLASS,
                   device_id=GPU_ID),
        'Am_softmax':
        Am_softmax(in_features=EMBEDDING_SIZE,
                   out_features=NUM_CLASS,
                   device_id=GPU_ID)
    }
    HEAD = HEAD_DICT[HEAD_NAME]
Esempio n. 8
0
    BACKBONE_DICT = {'ResNet_50': ResNet_50(INPUT_SIZE), 
                     'ResNet_101': ResNet_101(INPUT_SIZE), 
                     'ResNet_152': ResNet_152(INPUT_SIZE),
                     'IR_50': IR_50(INPUT_SIZE), 
                     'IR_101': IR_101(INPUT_SIZE), 
                     'IR_152': IR_152(INPUT_SIZE),
                     'IR_SE_50': IR_SE_50(INPUT_SIZE), 
                     'IR_SE_101': IR_SE_101(INPUT_SIZE), 
                     'IR_SE_152': IR_SE_152(INPUT_SIZE)}
    BACKBONE = BACKBONE_DICT[BACKBONE_NAME]
    print("=" * 60)
    print(BACKBONE)
    print("{} Backbone Generated".format(BACKBONE_NAME))
    print("=" * 60)

    HEAD_DICT = {'ArcFace': ArcFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
                 'CosFace': CosFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
                 'SphereFace': SphereFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
                 'Am_softmax': Am_softmax(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)}
    HEAD = HEAD_DICT[HEAD_NAME]
    print("=" * 60)
    print(HEAD)
    print("{} Head Generated".format(HEAD_NAME))
    print("=" * 60)

    LOSS_DICT = {'Focal': FocalLoss(), 
                 'Softmax': nn.CrossEntropyLoss()
                 'AdaCos' : AdaCos(),
                 'AdaM_Softmax': AdaM_Softmax() ,
                 'ArcFace' : ArcFace() ,
                 'ArcNegFace': ArcNegFace(),
Esempio n. 9
0
    BACKBONE_DICT = {'ResNet_50': ResNet_50(INPUT_SIZE),
                     'ResNet_101': ResNet_101(INPUT_SIZE),
                     'ResNet_152': ResNet_152(INPUT_SIZE),
                     'IR_50': IR_50(INPUT_SIZE),
                     'IR_101': IR_101(INPUT_SIZE),
                     'IR_152': IR_152(INPUT_SIZE),
                     'IR_SE_50': IR_SE_50(INPUT_SIZE),
                     'IR_SE_101': IR_SE_101(INPUT_SIZE),
                     'IR_SE_152': IR_SE_152(INPUT_SIZE)}
    BACKBONE = BACKBONE_DICT[BACKBONE_NAME]
    print("=" * 60)
    print(BACKBONE)
    print("{} Backbone Generated".format(BACKBONE_NAME))
    print("=" * 60)

    HEAD_DICT = {'ArcFace': ArcFace(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
                 'CosFace': CosFace(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
                 'SphereFace': SphereFace(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS),
                 'Am_softmax': Am_softmax(in_features=EMBEDDING_SIZE, out_features=NUM_CLASS)}
    HEAD = HEAD_DICT[HEAD_NAME]
    print("=" * 60)
    print(HEAD)
    print("{} Head Generated".format(HEAD_NAME))
    print("=" * 60)

    LOSS_DICT = {'Focal': FocalLoss(),
                 'Softmax': nn.CrossEntropyLoss()}
    LOSS = LOSS_DICT[LOSS_NAME]
    print("=" * 60)
    print(LOSS)
    print("{} Loss Generated".format(LOSS_NAME))