Esempio n. 1
0
    def calculate(self):
        """
        calculate various properties of the gaussian, fnl, gnl maps i.e. compute
        * Ais
        * As
        * Cls
        * dipoles using remove_dipole
        """
        inpCls=self.inputCls[:self.lmax+1]

        if (self.gausmap0!=None):
            self.gausCls0=hp.alm2cl(self.gausalm0)[0:self.lmax+1]
            self.gausCls1=hp.alm2cl(self.gausalm1)[0:self.lmax+1]
            self.gausA0=get_A0(self.gausCls0[1:], inpCls[1:])
            self.gausAi=Ais(self.gausmap1, self.lmax); self.gausA=AistoA(self.gausAi)
            self.gausAi2=Ais(self.gausmap0, self.lmax); self.gausA2=AistoA(self.gausAi2)
            self.gausmp=hp.remove_monopole(self.gausmap0, fitval=True)[1]
            self.gausdipole=get_dipole(self.gausmap1)

        if (self.fnlmaps0!=None):
            self.fnlCls0=[]; self.fnlCls1=[]; self.fnlA0=[]; self.fnlAi=[]; self.fnlAi2=[]
            self.fnlmp=[]; self.fnldipole=[]; self.fnlA=[]; self.fnlA2=[]

            for i in range(self.Nfnls):
                self.fnlCls0.append(hp.anafast(self.fnlmaps0[i], nspec=self.lmax))
                self.fnlCls1.append(hp.anafast(self.fnlmaps1[i], nspec=self.lmax))
                self.fnlA0.append(get_A0(self.fnlCls0[i][1:], inpCls[1:]))
                self.fnlAi.append(Ais(self.fnlmaps1[i], self.lmax)); self.fnlA.append(AistoA(self.fnlAi[i]))
                self.fnlAi2.append(Ais(self.fnlmaps0[i], self.lmax)); self.fnlA2.append(AistoA(self.fnlAi2[i]))
                self.fnlmp.append(hp.remove_monopole(self.fnlmaps0[i], fitval=True)[1])
                self.fnldipole.append(get_dipole(self.fnlmaps1[i]))
Esempio n. 2
0
def get_hem_Cls(skymap, direction, LMAX=256, deg=90.):
    """
    from the given healpix skymap, return Cls for two hemispheres defined by the
    direction given, useful to study the possible scale dependence of power modulation

    direction should be a unit vector
    """
    # generate hemispherical mask
    NPIX=len(skymap)
    NSIDE=hp.npix2nside(NPIX)
    maskp=np.array([0.]*NPIX)
    disc=hp.query_disc(nside=NSIDE, vec=direction, radius=0.0174532925*deg)
    maskp[disc]=1.
    #skymap=hp.remove_monopole(skymap)
    map1=hp.ma(skymap)
    map1.mask=maskp
    Clsp=hp.anafast(map1, lmax=LMAX)
    if (deg<90.):
        maskm=np.array([0.]*NPIX)
        disc=hp.query_disc(nside=NSIDE, vec=-direction, radius=0.0174532925*deg)
        maskm[disc]=1.
        map1.mask=maskm
    else:
        map1.mask=np.logical_not(maskp)

    Clsm=hp.anafast(map1, lmax=LMAX)

    return [Clsp, Clsm]
Esempio n. 3
0
def get_spectra(maps, maskmap, lmax, min_ell, delta_ell, wl=None, Mllmat=None, MllBinned=None, ellpq=None, MllBinnedInv=None):
	nside = hp.npix2nside(len(maps[0]))
	if wl == None:
		wl = hp.anafast(maskmap,regression=False)
		wl = wl[0:lmax+1]
	if Mllmat == None:
		Mllmat=Mll(lmax,wl)

	cutmaps = np.array([maps[0] * maskmap, maps[1] * maskmap, maps[2] * maskmap])
	cls = hp.anafast(cutmaps,pol=True)
	allcls= np.array([cls[0][0:lmax+1], cls[1][0:lmax+1], cls[2][0:lmax+1], cls[3][0:lmax+1], cls[4][0:lmax+1], cls[5][0:lmax+1]])

	if ellpq == None:
		all_ell = min_ell-1 + np.arange(1000)*delta_ell
		max_ell = np.max(all_ell[all_ell < lmax])
		nbins = np.int((max_ell + 1 - min_ell) / delta_ell)
		ell_low = min_ell + np.arange(nbins)*delta_ell
		ell_hi = ell_low + delta_ell - 1
		the_ell = np.arange(lmax+1)
		newl, p, q = make_pq(the_ell, ell_low, ell_hi)
	else:
		newl = ellpq[0]
		p = ellpq[1]
		q = ellpq[2]


	if MllBinned == None: MllBinned = MllBin(Mllmat, p, q)

	if MllBinnedInv == None: MllBinnedInv = np.linalg.inv(MllBinned)
	
	ClsBinned = BinCls(p,allcls)
	newcls = np.dot(MllBinnedInv, np.ravel(np.array(ClsBinned)))
	newcls = np.reshape(newcls, (6, p.shape[0]))
	return newcls, newl, Mllmat, MllBinned, MllBinnedInv, p, q, allcls
def G_plus_C_vs_G_four(freq):
    """plots fourier of GSM and CMB  added together
    compared to GSM alone
    User defines GSM frequency in MHz
    WARNING: Takes some time to run
    Note:
    GSM default shape is 512
    CMB default shape is 2048
    GSM and CMB shape must match to add arrays
    GSM has been cast to a higher nside of 2048
    """
    gsm=GlobalSkyModel()
    #generates a model of the GSM
    gsmdata=gsm.generate(freq)
    #upgrade the GSM data to 2048 
    gsmdata=hp.ud_grade(gsmdata,2048)
    #the raw CMB data
    cmbdata=hp.read_map('/home/amber/data/cmb/COM_CMB_IQU-commander-field-Int_2048_R2.01_full.fits')
    LMAX=1024
    bothmap=hp.anafast(gsmdata+cmbdata,lmax=LMAX)
    ell=np.arange(len(bothmap))
    plt.figure()
    freq_str=str(freq)
    plt.plot(ell,ell*(ell+1)*bothmap,color='b',label='GSM at '+freq_str+' MHz +CMB')
    plt.xlabel('ell');plt.ylabel('ell(ell+1)');plt.grid()
    #delete this line?
    #hp.write_bothmap('bothmap.fits',bothmap)
    gsmdataonly=gsm.generate(freq)
    gsmmaponly=hp.anafast(gsmdataonly,lmax=LMAX)
    ell=np.arange(len(gsmmaponly))
    plt.plot(ell,ell*(ell+1)*gsmmaponly,color='r',label='GSM at '+freq_str+' MHz')
    #delete this line?
    #hp.write_gsmmaponly('gsmmaponly.fits',gsmmaponly)
    plt.legend(loc='upper right')
    plt.show()
Esempio n. 5
0
 def run(self, dataSlice, slicePoint=None):
     # Calculate the power spectrum.
     if self.removeDipole:
         cl = hp.anafast(hp.remove_dipole(dataSlice[self.colname]))
     else:
         cl = hp.anafast(dataSlice[self.colname])
     l = np.arange(np.size(cl))
     condition = np.where((l <= self.lmax) & (l >= self.lmin))[0]
     totalpower = np.sum(cl[condition]*l[condition]*(l[condition]+1)/2.0/np.pi)
     return totalpower
Esempio n. 6
0
def toy_test_real_vs_harmonic(amp=100., nside=2**5, nexp=1000):

    # generate the signal map
    npix = hp.nside2npix(nside)
    signal = np.zeros(npix)
    ind_hpix = hp.ang2pix(nside, 0., 0., nest=False)
    signal[ind_hpix] = 1.
    # get autospectrum of signal
    lmax_tmp = 4*nside-1
    cl_signal = hp.anafast(signal, lmax=lmax_tmp)
    l = np.arange(len(cl_signal))

    # create white CL's with unit variance
    nl = np.ones_like(l, dtype=np.float)
    nl /= (np.sum(nl*(2.*l+1.))/4./np.pi)
    # create harmonic space weights.  the factor of 
    # 2L+1 is because we'll be dealing with 1d spectra rather than 2d.
    weight = (2.*l+1.)/nl

    est_real = []
    est_harm = []
    for i in range(nexp):
        print '%i/%i'%(i,nexp)
        # make noise map
        noise = hp.synfast(nl, nside)
        data = amp*signal + noise
        # get real space estimate of signal amplitude
        est_real.append(data[ind_hpix])
        # get harmonic space estimate of signal amplitude
        amp_tmp = np.sum(hp.anafast(signal, map2=data, lmax=lmax_tmp)*weight) / np.sum(cl_signal*weight)
        est_harm.append(amp_tmp)
    est_real = np.array(est_real)
    est_harm = np.array(est_harm)

    print ' '
    print ' mean(est_real): %0.2f'%est_real.mean()
    print ' mean(est_harm): %0.2f'%est_harm.mean()
    print '  var(est_real): %0.2f'%est_real.var()
    print '  var(est_harm): %0.2f'%est_harm.var()
    print '  VarRatio:   %0.2f'%(est_harm.var()/est_real.var())
    print '  std(est_real): %0.2f'%est_real.std()
    print '  std(est_harm): %0.2f'%est_harm.std()
    print '  StdRatio:   %0.2f'%(est_harm.std()/est_real.std())
    print ' '

    nbins=15
    pl.clf()
    pl.hist(est_real,bins=nbins, alpha=0.5)
    pl.hist(est_harm,bins=nbins, alpha=0.5)
    pl.legend(['real space','harmonic space'])
    pl.title('AMP=%0.3f, NEXP=%i, VarRatio=%0.3f'%(amp, nexp, est_harm.var()/est_real.var()))
    ipdb.set_trace()
def wpixel(instr, ell, nside=1024, idet=231, theta_max=30):
    nu = instr.filter.name
    NPOINTS = instr.detector.NPOINTS
    if NPOINTS == 1:
        return np.ones(len(ell))
    path_ = '/home/fincardona/Qubic/Compare_poly/maps/poly/interfero'
    pathN = '/home/fincardona/Qubic/spatial_extension/maps/poly/interfero'
    beam_ = read_map('%s/sb_nside{}_mono_{}Ghz_idet{}_tmax{}.fits'.
                format(nside, int(nu/1e9), idet, theta_max) % path_)
    beamN = read_map('%s/sb_nside{}_mono_{}Ghz_idet{}_tmax{}_Npoints{}.fits'.
                format(nside, int(nu/1e9), idet, theta_max, NPOINTS) % pathN)
    return (hp.anafast(beamN, lmax=ell[-1], pol=False) / 
            hp.anafast(beam_, lmax=ell[-1], pol=False))[ell[0]:]
Esempio n. 8
0
    def get_spectra(self, map1, map2=None):
        """
        Return biased and Xpol-debiased estimations of the power spectra of
        a Healpix map or of the cross-power spectra if *map2* is provided.

        xpol = Xpol(mask, lmin, lmax, delta_ell)
        biased, unbiased = xpol.get_spectra(map1, [map2])

        The unbiased Cls are binned. The number of bins is given by
        (lmax - lmin) // delta_ell, using the values specified in the Xpol's
        object initialisation. As a consequence, the upper bound of the highest
        l bin may be less than lmax. The central value of the bins can be
        obtained through the attribute `xpol.ell_binned`.

        Parameters
        ----------
        map1 : Nx3 or 3xN array
            The I, Q, U Healpix maps.
        map2 : Nx3 or 3xN array, optional
            The I, Q, U Healpix maps.

        Returns
        -------
        biased : float array of shape (6, lmax+1)
            The anafast's pseudo (cross-) power spectra for TT, EE, BB, TE, EB,
            TB. The corresponding l values are given by `np.arange(lmax + 1)`.

        unbiased : float array of shape (6, nbins)
            The Xpol's (cross-) power spectra for TT, EE, BB, TE, EB, TB.
            The corresponding l values are given by `xpol.ell_binned`.

        """
        map1 = np.asarray(map1)
        if map1.shape[-1] == 3:
            map1 = map1.T
        if map2 is None:
            biased = hp.anafast(map1 * self.mask, pol=True)
        else:
            map2 = np.asarray(map2)
            if map2.shape[-1] == 3:
                map2 = map2.T
            biased = hp.anafast(map1 * self.mask, map2 * self.mask, pol=True)
        biased = np.array([cl[:self.lmax+1] for cl in biased])
        binned = self.bin_spectra(biased)
        fact_binned = self.ell_binned * (self.ell_binned + 1) / (2 * np.pi)
        binned *= fact_binned
        unbiased = np.dot(self.mll_binned_inv, binned.ravel()).reshape(6, -1)
        unbiased /= fact_binned
        return biased, unbiased
Esempio n. 9
0
def compute_pcl_estimate(data_file,inv_noise_file,beam_file):
  d = hp.read_map(data_file)
  inv_n = hp.read_map(inv_noise_file)
  print "zero pixels= ",len(inv_n[inv_n<=0])
  if len(inv_n[inv_n<=0]) > 0:
    inv_n[inv_n<=0] = min(inv_n[inv_n>0])
  
  
  n  = 1./np.sqrt(inv_n)

  nside = hp.npix2nside(np.shape(d)[0])

  # compute the total power spectrum
  C_l = hp.anafast(d,lmax=2*nside)

  num_samps = int(1000)

  N_l = np.zeros(np.shape(C_l))

  B_l_in = np.loadtxt(beam_file,delimiter=",")

  B_l = B_l_in[:,1]

  #apply beam to the cls
  C_l /= B_l**2

  # Monte Carlo
  mu = np.zeros(np.shape(d))
  for samp in range(num_samps):
    if samp % 100 == 0 :
      print "samples =",samp
    # draw a realisation from noise
    n_i = np.random.normal(mu,n)

    # find the power spectrum of this realisation
    N_l_i = hp.anafast(n_i,lmax=2*nside)

    # accumulate
    N_l += N_l_i

  N_l /= float(num_samps)

  #apply beam to the nls
  N_l /= B_l**2

  # subtract
  S_l = C_l - N_l

  return (C_l,N_l,S_l)
Esempio n. 10
0
def generate_map(t, p, nside, plot=False):
    """Generate map and bands for the given galaxy locations"""
    npix = 12*nside**2
    ix = hp.ang2pix(nside, t, p, nest=True)
    M = np.zeros(npix)
    for i in xrange(len(ix)):
        M[ix[i]] += 1.
    ave = 1.*len(t)/npix
    M = M/ave-1.0 #Calculate overdensity

    cl = hp.anafast(M)
    ell = np.arange(len(cl))+1
    ell2 = (ell[::3]+ell[1::3]+ell[2::3])/3.
    cl2 = (cl[::3]+cl[1::3]+cl[2::3])/3.

    if plot:
        plot_galaxies_and_density(t, p, M)
        plot_anafast_band_powers(ell2, cl2)
        plt.show()

    ell3 = ell2[1:]
    cl3 = cl2[1:] #Alex to Matias: Why are these removed?
    cl_err = np.ones(len(ell3))*0.00002
    index = np.arange(len(ell3))
    ell_min = ell3-1
    ell_max = ell3+1

    cl3 = cl3*1000 #Bigger c_l values for convergence

    bands = zip(index, ell3, ell_min, ell_max, cl3, cl_err, cl3)

    return M, bands
Esempio n. 11
0
    def __init__(self, mask, lmin, lmax, delta_ell):
        """
        Parameters
        ----------
        mask : boolean Healpix map
            Mask defining the region of interest (of value True)
        lmin : int
            Lower bound of the first l bin.
        lmax : int
            Highest l value to be considered. The inclusive upper bound of
            the last l bin is lesser or equal to this value.
        delta_ell :
            The l bin width.

        """
        mask = np.asarray(mask)
        lmin = int(lmin)
        lmax = int(lmax)
        if lmin < 1:
            raise ValueError('Input lmin is less than 1.')
        if lmax < lmin:
            raise ValueError('Input lmax is less than lmin.')
        delta_ell = int(delta_ell)
        wl = hp.anafast(mask)[:lmax+1]
        self.mask = mask
        self.lmin = lmin
        self.lmax = lmax
        self.delta_ell = delta_ell
        self.wl = wl
        self.ell_binned, self._p, self._q = self._bin_ell()
        mll_binned = self._get_Mll()
        self.mll_binned_inv = np.linalg.inv(mll_binned)
Esempio n. 12
0
def study_multiband_planck(quick=True):
    savename = datadir+'cl_multiband.pkl'
    bands = [100, 143, 217, 'mb']
    if quick: cl = pickle.load(open(savename,'r'))
    else:
        cl = {}
        mask = load_planck_mask()
        mask_factor = np.mean(mask**2.)
        for band in bands:
            this_map = load_planck_data(band)
            this_cl = hp.anafast(this_map*mask, lmax=lmax)/mask_factor
            cl[band] = this_cl
        pickle.dump(cl, open(savename,'w'))


    cl_theory = {}
    pl.clf()
    
    for band in bands:
        l_theory, cl_theory[band] = get_cl_theory(band)
        this_cl = cl[band]
        pl.plot(this_cl/cl_theory[band])
        
    pl.legend(bands)
    pl.plot([0,4000],[1,1],'k--')
    pl.ylim(.7,1.3)
    pl.ylabel('data/theory')
Esempio n. 13
0
 def test_anafast_iqu(self):
     cl = hp.anafast([m.filled() for m in self.map1], lmax = 1024)
     cliqu = np.array(pyfits.open(os.path.join(self.path, 'data', 'cl_iqu_wmap_fortran.fits'))[1].data)
     self.assertEqual(len(cl[0]), 1025)
     self.assertEqual(len(cl), 6)
     for comp in range(6):
         np.testing.assert_array_almost_equal(cl[comp], np.double(cliqu[cliqu.dtype.names[comp]]), decimal=4)
Esempio n. 14
0
 def test_anafast_iqu(self):
     self.map1[0] = hp.remove_monopole(self.map1[0])
     cl = hp.anafast(self.map1, lmax=self.lmax)
     self.assertEqual(len(cl[0]), 65)
     self.assertEqual(len(cl), 6)
     for i in range(6):
         np.testing.assert_array_almost_equal(cl[i], self.cliqu[i], decimal=8)
def G_plus_C_cross_C_four(freq,scale):
    """plot of fourier of
    GSM(scale)+CMB crossed with CMB
    compared to CMB only
    User defines GSM freq in MHz 
    User defines scale of GSM such as 0.1 or 0.01
    WARNING: takes some time to run
    """
    gsm=GlobalSkyModel()
    #create the GSM model
    gsmdata=gsm.generate(freq)
    #rather than upgrading GSM, downgrade the CMB to 512
    cmbdata=hp.read_map('/home/amber/data/cmb/COM_CMB_IQU-commander-field-Int_2048_R2.01_full.fits')
    cmbmap=hp.ud_grade(cmbdata,512)
    LMAX=1024
    both=(gsmdata*scale)+cmbmap 
    #cross cmb+gsm with the cmb
    c_plus_g_cross_c=hp.sphtfunc.anafast(both,map2=cmbmap,lmax=LMAX)
    ell=np.arange(len(c_plus_g_cross_c))
    plt.figure()
    #format variables as text for labels
    freq_str=str(freq)
    scale_str=str(scale)
    plt.plot(ell,ell*(ell+1)*c_plus_g_cross_c,color='b',label='GSM('+scale_str+') at '+freq_str+' MHZ+CMB cross CMB')
    cmbmaponly=hp.anafast(cmbdata,lmax=LMAX)
    ell=np.arange(len(cmbmaponly))
    plt.plot(ell,ell*(ell+1)*cmbmaponly,color='r',label='CMB') 
    #delete this line?
    #hp.write_cmbmaponly('cmbmaponly.fits',cmbmaponly)
    plt.xlabel('ell');plt.ylabel('ell(ell+1)');plt.grid()
    #delete this line?
    #hp.write_cp_plus_g_cross_c('c_plus_g_cross_c.fits',c_plus_g_cross_c)
    plt.legend(loc='upper right')
    plt.show()
Esempio n. 16
0
def main(nsim=0):

    nl = h._nl

    # Load map, mask, mll
    print ""
    print "Loading map, mask, mll, and calculating mll_inv..."

    map_data = hp.read_map(h._fn_map)
    mask = hp.read_map(h._fn_mask)
    mll = np.load(h._fn_mll)
    mll_inv = np.linalg.inv(mll)

    # Read in Planck map: normalize, remove mono-/dipole, mask
    print "Normalizing, removing mono-/dipole, and masking map..."
    map_masked = map_data * mask
    # Create cltt (cltt_data_masked) and correct it (cltt_data_corrected)
    print "Calculating cltt_data_masked, cltt_data_corrected..."
    cltt_data_masked = hp.anafast(map_masked)
    cltt_data_masked = cltt_data_masked[:nl]
    cltt_data_corrected = np.dot(mll_inv, cltt_data_masked)
    # Create simulation of map (map_sim) from cltt_data_corrected
    print "Creating and saving map_sim_%i..." % nsim
    map_sim = hp.synfast(cltt_data_corrected, h._nside)
    hp.write_map('output/map_sim_%i.fits' % nsim, map_sim)
def read_and_diff_files_fast(f1,f2,nside=256,tmask=None,return_map=False):
    #assume tmask input is already degraded
    
    mm1=hp.read_map(f1,[0,1,2],verbose=False)
    mm2=hp.read_map(f2,[0,1,2],verbose=False)

    mmm1=[]
    mmm2=[]
    for m1,m2 in zip(mm1,mm2):
        m1=hp.ud_grade(hp.ma(m1),nside_out=nside)
        m2=hp.ud_grade(hp.ma(m2),nside_out=nside)
        tmask=m1.mask | m2.mask | tmask
        mmm1.append(m1)
        mmm2.append(m2)
    
    diff=[]
    for m1,m2 in zip(mmm1,mmm2):
        d=m1-m2
        d.mask=tmask
        diff.append(d)
    
    skyfrac=1-float(tmask.sum())/len(tmask)
        
    cldata=hp.anafast(diff)
    cldata_out=[]
    for cl in cldata:
        cldata_out.append(cl/skyfrac)
        
    if return_map is False:
        return cldata_out
    if return_map is True:
        return cldata_out,diff
 def GetPs(freq):
     name = "21cm_Syn_35beam_noise"
     #       plt.close('all')
     re = tt.ICA.rebuild(N, A_, S_, freq, Plot)
     rebuild_21cm = map[freq, :] - re
     rebuild_21cm = rebuild_21cm - rebuild_21cm.mean()
     cl1 = hp.anafast(map1[freq, pol])
     cl2 = hp.anafast(rebuild_21cm)
     l = np.arange(len(cl1))
     plt.figure("APS")
     plt.semilogy(l, l * (l + 1) * cl1, "r-", label="simulation")
     plt.semilogy(l, l * (l + 1) * cl2, "b-", label="result")
     plt.xlabel("$l$")
     plt.ylabel("$l(l+1)C_l$")
     plt.title(name)
     plt.legend()
     plt.savefig("./result/APS/" + name + ".eps")
Esempio n. 19
0
def test_rotate_map_polarization_with_spectrum():
    """Rotation of reference frame should not change the angular power spectrum.
    In this test we create a map from a spectrum with a pure EE signal and check
    that the spectrum of this map and the spectrum of the same map rotated
    from Galactic to Ecliptic agrees.
    This test checks if the QU rotation is correct"""
    nside = 32
    cl = np.zeros((6, 96), dtype=np.double)
    # Set ell=1 for EE to 1
    cl[1][2] = 1
    gal2ecl = Rotator(coord=["G", "E"])
    m_original = hp.synfast(cl, nside=nside, new=True)
    cl_from_m_original = hp.anafast(m_original)
    m_rotated = gal2ecl.rotate_map_pixel(m_original)
    cl_from_m_rotated = hp.anafast(m_rotated)

    assert np.abs(cl_from_m_rotated - cl_from_m_original).sum() < 1e-2
Esempio n. 20
0
def estimate_cl(sky_map, lmax, binary_mask=None, fwhm=0.0, pol=True):

    sky_map_masked, binary_mask = mask_map(sky_map, binary_mask=binary_mask, pol=pol, ret_mask=True, fill_zeros=True)

    f_sky = float(np.sum(binary_mask))/binary_mask.size

    Bl = hp.gauss_beam(fwhm=fwhm, lmax=lmax, pol=pol)

    if pol:
        spectra = hp.anafast((sky_map_masked[0].filled(), sky_map_masked[1].filled(), sky_map_masked[2].filled()), lmax=lmax)[:4]
        spectra = np.array(spectra)
        spectra /= f_sky*Bl.T**2
    else:
        spectra = hp.anafast(sky_map_masked.filled(), lmax=lmax)
        spectra /= f_sky*Bl**2

    spectra = np.array(spectra)
    return spectra
Esempio n. 21
0
def generate_powerspectrum(mask,lmax):
	print "Reading mask file"
	m = hp.read_map(mask)
	clfn = mask + '.cl'
	nside = hp.npix2nside(m.size)
	print "Generating power spectrum"
	cl = hp.anafast(m,lmax=lmax)
	np.savetxt(clfn,cl)
	return clfn
Esempio n. 22
0
 def test_anafast_iqu(self):
     cl = hp.anafast([m.filled() for m in self.map1], lmax = 1024)
     cliqu = pyfits.open(os.path.join(self.path, 'data', 'cl_iqu_wmap_fortran.fits'))[1].data
     self.assertEqual(len(cl[0]), 1025)
     self.assertEqual(len(cl), 6)
     for comp in range(6):
         comphealpix = comp
         if comp in [4,5]: # order of HEALPIX is TB, EB while in healpy is EB, TB
             comphealpix = {4:5, 5:4}[comp] 
         np.testing.assert_array_almost_equal(cl[comp], cliqu.field(comphealpix), decimal=8)
Esempio n. 23
0
    def plotPowerSpectrum(self, metricValue, title=None, fignum=None, maxl=500.,
                          label=None, addLegend=False, legendloc='upper right',
                          removeDipole=True,
                          logPlot=True, verbose=False, **kwargs):
        """Generate and plot the power spectrum of metricValue.

        maxl = maximum ell value to plot (default 500 .. to plot all l, set to value > 3500)
        title = plot Title (default None)
        fignum = figure number (default None and create new plot)
        label = label to add in figure legend (default None)
        addLegend = flag to add legend (default False).
        removeDipole = remove dipole when calculating power spectrum (default True)
        (monopole removed automatically.)
        """
        if fignum:
            fig = plt.figure(fignum)
        else:
            fig = plt.figure()
        # If the mask is True everywhere (no data), just plot zeros
        if False not in metricValue.mask:
            return None
        else:
            if removeDipole:
                cl = hp.anafast(hp.remove_dipole(metricValue.filled(self.badval), verbose=verbose))
            else:
                cl = hp.anafast(metricValue.filled(self.badval))
        l = np.arange(np.size(cl))
        # Plot the results.
        if removeDipole:
            condition = ((l < maxl) & (l > 1))
        else:
            condition = (l < maxl)
        plt.plot(l[condition], (cl[condition]*l[condition]*(l[condition]+1))/2.0/np.pi, label=label)
        if cl[condition].max() > 0 and logPlot:
            plt.yscale('log')
        plt.xlabel(r'$l$')
        plt.ylabel(r'$l(l+1)C_l/(2\pi)$')
        if addLegend:
            plt.legend(loc=legendloc, fancybox=True, prop={'size':'smaller'})
        if title!=None:
            plt.title(title)
        # Return figure number (so we can reuse/add onto/save this figure if desired).
        return fig.number
Esempio n. 24
0
 def __init__(self,threshold,sig,freq,nside,LMAX,CMB_file_name='/home/amber/data/cmb/COM_CMB_IQU-commander-field-Int_2048_R2.01_full.fits'):
     self.threshold=threshold
     self.sig=sig
     self.freq=freq
     #check that nside value is valid
     if not np.all(hp.isnsideok(nside)):
         raise ValueError("%s is not a valid nside parameter (must be a power of 2, less than 2**30)"%str(nside))
     self.nside=nside
     self.LMAX=LMAX
     self.CMB_file_name=CMB_file_name
     #can read and downgrade cmb in same step
     #use nside instead of 512. change both cmb and gsm to nside
     self.CMB_map=hp.ud_grade(hp.read_map(CMB_file_name),nside)
     #power spectrum of downgraded CMB map
     self.CMB_PS=hp.anafast(self.CMB_map,lmax=LMAX)
     self.ell=np.arange(len(self.CMB_PS))
     self.signal=np.sqrt((np.sum((self.ell*(self.ell+1)*self.CMB_PS)**2))/(len(self.CMB_PS)))
     self.GSM_map=hp.ud_grade(gsm.generate(self.freq),nside)
     self.GSM_PS=hp.anafast(self.GSM_map,lmax=LMAX)
Esempio n. 25
0
def make_cl_planck_data():
    savename = datadir+'cl_planck_217.pkl'
    # get mask
    mask = load_planck_mask()
    mask_factor = np.mean(mask**2.)
    # get planck data
    planck = load_planck_data()
    cl_planck = hp.anafast(mask*planck, lmax=4000)/mask_factor
    l_planck = np.arange(len(cl_planck))
    pickle.dump((l_planck, cl_planck), open(savename,'w'))
def w_function(
        lmax, nside, n, nu_cent, idet, theta_max, syb_f=None, NPOINTS=1, 
        pol=False):
    cls = np.zeros((len(n), len(NPOINTS), lmax))
    ell = np.arange(lmax)
    for i, enn in enumerate(n):
        for j, N in enumerate(NPOINTS):
            beam = read_(
                nside, enn, nu_cent, idet, theta_max, syb_f=syb_f, NPOINTS=N)
            cls[i, j] = hp.anafast(beam, lmax=lmax-1, pol=pol) * (2*ell+1)
    return cls, cls.max() 
Esempio n. 27
0
    def __call__(self, metricValue, slicer, userPlotDict, fignum=None):
        """
        Generate and plot the power spectrum of metricValue (calculated on a healpix grid).
        """
        if 'Healpix' not in slicer.slicerName:
            raise ValueError('HealpixPowerSpectrum for use with healpix metricBundles.')
        plotDict = {}
        plotDict.update(self.defaultPlotDict)
        plotDict.update(userPlotDict)

        fig = plt.figure(fignum, figsize=plotDict['figsize'])
        ax = fig.add_subplot(plotDict['subplot'])
        # If the mask is True everywhere (no data), just plot zeros
        if False not in metricValue.mask:
            return None
        if plotDict['removeDipole']:
            cl = hp.anafast(hp.remove_dipole(metricValue.filled(slicer.badval)), lmax=plotDict['maxl'])
        else:
            cl = hp.anafast(metricValue.filled(slicer.badval), lmax=plotDict['maxl'])
        ell = np.arange(np.size(cl))
        if plotDict['removeDipole']:
            condition = (ell > 1)
        else:
            condition = (ell > 0)
        ell = ell[condition]
        cl = cl[condition]
        # Plot the results.
        plt.plot(ell, (cl * ell * (ell + 1)) / 2.0 / np.pi,
                 color=plotDict['color'], linestyle=plotDict['linestyle'], label=plotDict['label'])
        if cl.max() > 0 and plotDict['logScale']:
            plt.yscale('log')
        plt.xlabel(r'$l$', fontsize=plotDict['fontsize'])
        plt.ylabel(r'$l(l+1)C_l/(2\pi)$', fontsize=plotDict['fontsize'])
        if plotDict['labelsize'] is not None:
            plt.tick_params(axis='x', labelsize=plotDict['labelsize'])
            plt.tick_params(axis='y', labelsize=plotDict['labelsize'])
        if plotDict['title'] is not None:
            plt.title(plotDict['title'])
        # Return figure number (so we can reuse/add onto/save this figure if desired).
        return fig.number
Esempio n. 28
0
def make_multiband_map(quick=True):
    savename = datadir+'map_mb.pkl'
    if quick: return pickle.load(open(savename,'r'))
    
    mask = load_planck_mask()
    mask_factor = np.mean(mask**2.)    
    bands=[100, 143, 217]

    # first calculate the band-dependent, ell-dependent weights
    weight = {}
    cl_theory = {}
    total_weight = 0.
    for band in bands:
        # load biased, beam-convolved spectrum
        l_theory, this_cl_theory = get_cl_theory(band)
        # debias (correct for beam)
        bl, l_bl = load_planck_bl(band)
        this_cl_theory /= (bl**2.)
        cl_theory[band] = this_cl_theory
        weight[band] = 1./this_cl_theory
        total_weight += 1./this_cl_theory
    for k in weight.keys(): weight[k]/=total_weight

    alm_multiband = 0.
    for band in bands:
        # load map        
        this_map = load_planck_data(band)
        
        # get alm's
        this_cl, this_alm = hp.anafast(this_map*mask, lmax=lmax, alm=True)
        # you might be tempted to correct alm by sqrt(mask_factor), but we're going to
        # transfer back to map space anyway.  we'll account for the mask later.

        # debias these alm's (i.e. correct for one power of beam)
        bl, l_bl = load_planck_bl(band)
        assert len(bl)==(lmax+1)
        this_alm = hp.sphtfunc.almxfl(this_alm, 1./bl, inplace=False)
        # multiply by ell-dependent weights
        this_alm = hp.sphtfunc.almxfl(this_alm, weight[band], inplace=False)
        alm_multiband += this_alm

    # apply a nominal multi-band beam, which we'll take to be a FWHM=5' gaussian
    bl_mb, l_bl = load_planck_bl('mb')
    alm_multiband = hp.sphtfunc.almxfl(alm_multiband, bl_mb, inplace=False)
    
    # transfer back to real space
    map_mb = hp.sphtfunc.alm2map(alm_multiband, nside, lmax=lmax)

    # save
    pickle.dump(map_mb, open(savename,'w'))
    return map_mb
Esempio n. 29
0
def correlated_cl(par,mp) :
    nb=len(par.bins)-1
    lmax=3*par.nside-1
    pixsize=4*np.pi/hp.nside2npix(par.nside)
    cb=np.zeros(nb)
    larr=np.arange(lmax+1)

    z=invert_covar(par,mp)
    clz_scaled=(2*larr+1.)*hp.anafast(z)

    for ib in np.arange(nb) :
        cb[ib]=np.sum(clz_scaled[par.bins[ib]:par.bins[ib+1]])/pixsize**2

    return cb
def Beam_G_plus_C_cross_C_four(freq,scale,itheta,iphi,nside,sig=np.pi/10):
    """plot of fourier for
    GSM(scale)+CMB crossed with CMB
    beam applied then accounted for
    all compared to CMB alone
    User defines frequency of GSM and scale to decrease it
    User selects point of interest: theta and phi
    User may designate sigma for beam
    User selects nside
    Default sigma is pi/10
    """
    gsm=GlobalSkyModel()
    #generates GSM model
    gsmdata=gsm.generate(freq)
    #rather than upgrading GSM, downgrade the CMB to 512
    cmbdata=hp.read_map('/home/amber/data/cmb/COM_CMB_IQU-commander-field-Int_2048_R2.01_full.fits')
    cmbmap=hp.ud_grade(cmbdata,512)
    LMAX=1024
    both=(gsmdata*scale)+cmbmap
    #run the beam function with the given input
    showbeam=beam(itheta,iphi,nside,sig)
    npix=12*nside**2
    #correct the data to account for the beam
    correction=npix/(np.sum(showbeam))
    both=both*showbeam*correction   
    #cross GSM+CMB with CMB and transform
    c_plus_g_cross_c=hp.sphtfunc.anafast(both,map2=cmbmap,lmax=LMAX)
    ell=np.arange(len(c_plus_g_cross_c))
    plt.figure()
    #convert variables into text for labels
    freq_str=str(freq)
    scale_str=str(scale)
    plt.plot(ell,ell*(ell+1)*c_plus_g_cross_c,color='b',label='GSM('+scale_str+') at '+freq_str+' MHZ+CMB cross CMB')
    #transform CMB
    cmbmaponly=hp.anafast(cmbmap,lmax=LMAX)
    ell=np.arange(len(cmbmaponly))
    plt.plot(ell,ell*(ell+1)*cmbmaponly,color='r',label='CMB')
    #delete this line?
    #hp.write_cmbmaponly('cmbmaponly.fits',cmbmaponly)
    plt.xlabel('ell');plt.ylabel('ell(ell+1)');plt.grid()
    #delete this line?
    #hp.write_c_plus_g_cross_c('c_plus_g_cross_c.fits',c_plus_g_cross_c)
    #convert variable into text for labels
    theta_str=str(itheta)
    phi_str=str(iphi)
    plt.legend(loc='upper right')
    plt.title('Point of Interest:('+theta_str+','+phi_str+')')
    #set the limits for the y axis
    plt.ylim(-0.00000001,0.00000006)
    plt.show()
)
noise = sim.other_components["noise"]
hitmaps, _ = noise.get_hitmaps(tube)

for i, ch in enumerate(mapsims.parse_channels("tube:" + tube)[0]):
    filename = glob(folder + f"*{ch.tag}*1_of_1*")[0]
    print("reading " + filename)
    m[i] = hp.read_map(filename, (0, 1, 2))
    npix = len(m[i][0])
    nside = hp.npix2nside(npix)
    sky_fraction = hp.mask_good(m[i][0]).sum() / npix
    print("sky_fraction", sky_fraction)
    m[i] *= hitmaps[i]
    cl.append(
        np.array(
            hp.anafast(m[i], lmax=3*nside-1, use_pixel_weights=True)
        )
        / np.mean(hitmaps[i] ** 2)
        / sky_fraction
    )
cl.append(
    np.array(
        hp.anafast(m[0], m[1], lmax=3*nside-1, use_pixel_weights=True)
    )
    / np.mean(hitmaps[i] ** 2)
    / sky_fraction
)

cl = np.array(cl)
with open(f"output/noise/N_ell_tube_{tube}.pkl", "wb") as f:
    pickle.dump(cl, f, protocol=-1)
Esempio n. 32
0
        # y = data[0]

        # popt, pcov = optimize.curve_fit(f1, x, y)
        # a, b, c = popt

        # y_fit = f(x_fit, *popt)

        # lable = r'$a \, \exp{(- \frac{|x - \mu|} {c})}$' + '\n\n' + r'$a = %f$' % a + '\n' + r'$\mu = %f$' % b + '\n' + r'$\sigma = %f$' % np.abs(c)
        # plt.plot(x_fit, y_fit, lw=2, color="g", label=lable)
        # plt.legend()

    plt.savefig(out_dir + 'hist_%d.png' % i)
    plt.close()

    # compute cl
    cl_sim = healpy.anafast(cm_map[cind])
    cl_est = healpy.anafast(rec_cm[cind])
    cl_simxest = healpy.anafast(cm_map[cind], rec_cm[cind])

    # plot cl
    plt.figure()
    plt.plot(cl_sim, label='Input HI')
    plt.plot(cl_est, label='Recovered HI')
    plt.plot(cl_simxest, label='cross', color='magenta')
    plt.legend(loc='best')
    plt.xlabel(r'$l$')
    plt.ylabel(r'$C_l^{TT}$')
    plt.savefig(out_dir + 'cl_%d.png' % i)
    plt.close()

    # plot transfer function cl_out / cl_in
Esempio n. 33
0
        #print(lines[i+1].split()[0])
        thetas.append(float(lines[i].split()[1]))
        phis.append(float(lines[i].split()[2]))
        i += 1

    indices = hp.ang2pix(nside, thetas, phis)
    hpxmap = np.zeros(npix, dtype=np.float)
    for k in range(len(thetas)):
        hpxmap[indices[k]] += 1.0
        #hpxmap[indices[k]] += npix*(1.0/len(thetas))
    hpxmapFinal = np.zeros(npix, dtype=np.float)
    for v in range(len(thetas2)):
        hpxmapFinal[indices2[v]] += (
            hpxmap[indices2[v]] / hpxmap2[indices2[v]]) * (npix *
                                                           (1.0 / len(thetas)))
    c = hp.anafast(hpxmapFinal)
    print(c)
    print("")
    print("")

DPI = 100
SIZE = 400

hp_smoothed = hp.sphtfunc.smoothing(hpxmap, fwhm=np.radians(3.), iter=1)

hp.mollview(hp_smoothed,
            cmap=cm.jet,
            norm="hist",
            xsize=SIZE,
            title='Real Data smoothed')
plt.savefig("AMPT_smoothed1.png", dpi=DPI)
Esempio n. 34
0
#copy input data as we need it later
outputMap = copy.copy(inputMap)

#transform map
lens.transformModelVector(outputMap, 5 * crpropa.EeV)

#plot transformed map
healpy.mollview(map=outputMap, title='Lensed')


# In[17]:

#Calculate power spectra
lmax = 20
mmUnlensed = healpy.anafast(inputMap, lmax=lmax)
mmLensed = healpy.anafast(outputMap, lmax=lmax)

#plot power spectra
figure()
l = arange(0, 20.01)
step(l, mmUnlensed / mmUnlensed[0], c='k', label='Unlensed', where='mid')
step(l, mmLensed / mmLensed[0], c='r', label='Lensed', where='mid')
semilogy()
ylim(1E-7,1)
xlabel('$l$')
ylabel(' $C_l / C_0$')
legend()


# In[17]:
Esempio n. 35
0
def clerr_jack(delta, mask, weight, njack=20, lmax=512):
    '''
       
    '''
    npix = delta.size 
    hpix = np.argwhere(mask).flatten()
    dummy = np.ones(mask.sum())
    hpixl, wl, deltal,_ = split_jackknife(hpix, weight[mask], 
                                          delta[mask], dummy, njack=njack)
    print('# of jackknifes %d, input : %d'%(len(hpixl), njack))
    cljks = {}
    # get the cl of the jackknife mask
    wlt = wl.copy()
    hpixt   = hpixl.copy()
    wlt.pop(0)
    hpixt.pop(0)
    wlc = np.concatenate(wlt)
    hpixc  = np.concatenate(hpixt)
    maski  = np.zeros(npix, '?')
    maski[hpixc] = True 
    map_i  = hp.ma(maski.astype('f8'))
    map_i.mask = np.logical_not(maski)
    clmaskj = hp.anafast(map_i.filled(), lmax=lmax)
    sfj = ((2*np.arange(clmaskj.size)+1)*clmaskj).sum()/(4.*np.pi) 

    for i in range(njack):
        hpixt   = hpixl.copy()
        wlt     = wl.copy()
        deltalt = deltal.copy()
        #
        hpixt.pop(i)
        wlt.pop(i)
        deltalt.pop(i)
        #
        hpixc  = np.concatenate(hpixt)
        wlc    = np.concatenate(wlt)
        deltac = np.concatenate(deltalt)
        #
        maski  = np.zeros(npix, '?')
        deltai = np.zeros(npix)
        wlci   = np.zeros(npix)
        #
        maski[hpixc]   = True
        deltai[hpixc]  = deltac
        wlci[hpixc]    = wlc
        #
        map_i       = hp.ma(deltai * wlci)
        map_i.mask  = np.logical_not(maski)
        cljks[i]    = hp.anafast(map_i.filled(), lmax=lmax)/sfj
    #
    hpixt   = hpixl.copy()
    wlt     = wl.copy()
    deltalt = deltal.copy()
    #
    hpixc  = np.concatenate(hpixt)
    wlc    = np.concatenate(wlt)
    deltac = np.concatenate(deltalt)
    #
    maski  = np.zeros(npix, '?')
    deltai = np.zeros(npix)
    wlci   = np.zeros(npix)
    #
    maski[hpixc]   = True
    deltai[hpixc]  = deltac
    wlci[hpixc]    = wlc
    #
    map_i      = hp.ma(maski.astype('f8'))
    map_i.mask = np.logical_not(maski)
    clmask = hp.anafast(map_i.filled(), lmax=lmax)
    sf = ((2*np.arange(clmask.size)+1)*clmask).sum()/(4.*np.pi) 

    map_i       = hp.ma(deltai * wlci)
    map_i.mask  = np.logical_not(maski)
    cljks[-1]   = hp.anafast(map_i.filled(), lmax=lmax)/sf   # entire footprint
    #
    clvar = np.zeros(len(cljks[-1]))
    for i in range(njack):
        clvar += (cljks[-1] - cljks[i])*(cljks[-1] - cljks[i])
    clvar *= (njack-1)/njack
    return dict(clerr=np.sqrt(clvar), cljks=cljks, clmaskj=clmaskj, clmask=clmask, sf=sf, sfj=sfj)
Esempio n. 36
0
        deltai[~mask] = hp.UNSEEN
        deltai[mask] = deltai[mask] / deltai[mask].mean() - 1.0
        hp.fitsfunc.write_map(
            'Maps/delta_' + params.runflag +
            '_matter_fullsky_{}.fits'.format(str(round(zl, 4))),
            deltai,
            overwrite=True,
            dtype=np.float32)

        kappai = (1.0+zl) * ( ( 1.0 - cosmology.lcdm.comoving_distance(zl)/cosmology.lcdm.comoving_distance(params.zsource) ) *\
                    cosmology.lcdm.comoving_distance(zl) *\
                  ( cosmology.lcdm.comoving_distance(z2) - cosmology.lcdm.comoving_distance(z1) ) ).to_value() * deltai
        kappai *= (3.0 * cosmology.lcdm.Om0 * cosmology.lcdm.H0**2 / 2.0 /
                   cosmology.cspeed**2).to_value()
        kappa[mask] += kappai[mask]
        kappai[~mask] = hp.UNSEEN
        hp.fitsfunc.write_map(
            'Maps/kappa_' + params.runflag +
            '_field_fullsky_{}.fits'.format(str(round(zl, 4))),
            kappai,
            overwrite=True,
            dtype=np.float32)
        print("++++++++++++++++++++++")

    print("Computing convergence Cl")
    cl = hp.anafast(kappa, lmax=512)
    ell = np.arange(len(cl))
    np.savetxt("Maps/Cls_kappa_z{}.txt".format(params.zsource),
               np.transpose([ell, cl, ell * (ell + 1) * cl]))
    print("All done!")
Esempio n. 37
0
def proj_all(dens_type=0,
             ngrid=512,
             nside=256,
             lmax=750,
             rsd=True,
             write=True):

    npix = hp.nside2npix(nside)
    dirin = os.path.join("batch", "ngrid{}".format(ngrid),
                         "dens_type{}".format(dens_type))
    files = glob.glob(os.path.join(dirin, "cat*.fits"))
    ncat = len(files)
    print("{} files in {}".format(len(files), dirin))
    zval = (0, 0.1, 0.2, 0.3, 0.4, 0.5)

    cpt = 1
    cls = zeros((4, lmax + 1))
    for file in files:
        cat = Catalog(file, rsd)
        print("OK {}".format(cpt))
        for i in range(0, 4):
            ishell = i + 2
            zmax = zval[ishell]
            zmin = zval[ishell - 1]
            zrec, ra, dec = cat.get([zmin, zmax])
            Nsamp = len(ra)
            nbar = Nsamp / (4 * np.pi)
            mp = np.bincount(hp.ang2pix(nside, np.radians(90 - dec),
                                        np.radians(ra)),
                             minlength=npix)
            Nmean = mp.mean()
            map = mp.astype(float) / Nmean - 1.
            #anafast
            cl = hp.anafast(map,
                            lmax=lmax,
                            iter=0,
                            pol=False,
                            use_weights=True,
                            datapath=os.environ['HEALPIXDATA'])
            l = arange(len(cl))
            s2 = sum((2 * l + 1) * cl) / (4 * pi)
            print(
                "\t -> shell={}: z in [{},{}]  Nsamp={:5.2}M sigma={:5.2} shot noise={:5.2}"
                .format(ishell, zmin, zmax, Nsamp / 1e6, sqrt(s2), 1 / nbar))
            #remove SN
            cl -= 1. / nbar
            cls[i, :] += cl
        cpt += 1
    #normalize
    for i in range(0, 4):
        cls[i, :] /= ncat

    if write:
        for i in range(0, 4):
            ishell = i + 2
            dirout = os.path.join(dirin, "shell{:d}".format(ishell))
            os.makedirs(dirout, exist_ok=True)
            clname = "clmean.fits"
            if not rsd:
                clname = "clmean_norsd.fits"
            f1 = os.path.join(dirout, clname)
            print("writing {}".format(f1))
            hp.write_cl(f1, cls[i], overwrite=True)

    return cls
Esempio n. 38
0
def proj(dens_type=0,
         ishell=5,
         ngrid=512,
         nside=256,
         lmax=750,
         rsd=True,
         write=True):

    dirin = get_path(dens_type, ishell, ngrid)
    os.makedirs(dirin, exist_ok=True)
    zval = (0, 0.1, 0.2, 0.3, 0.4, 0.5)

    zmax = zval[ishell]
    zmin = zval[ishell - 1]

    files = glob.glob(os.path.join(dirin, "..", "cat*.fits"))
    print("Analyzing: {}".format(dirin))
    print("shell #{}: z=[{},{}] ".format(ishell, zmin, zmax))

    print("there are {} files".format(len(files)))

    zcut = [zmin, zmax]

    print(" --> slice z=[{},{}] onto nside={} map".format(
        zcut[0], zcut[1], nside))
    npix = hp.nside2npix(nside)

    cls = []
    cpt = 1
    for file in files:
        #zrec,ra,dec=read_catalog(file,zcut,rsd)
        catalog = Catalog(file, rsd)
        zrec, ra, dec = catalog.get(zcut)
        Nsamp = len(ra)
        nbar = Nsamp / (4 * np.pi)
        print(" {} -> Nsamp={}, SN={}".format(cpt, Nsamp, 1 / nbar))
        mp = np.bincount(hp.ang2pix(nside, np.radians(90 - dec),
                                    np.radians(ra)),
                         minlength=npix)
        Nmean = mp.mean()
        map = mp.astype(float) / Nmean - 1.
        #anafast
        cl = hp.anafast(map,
                        lmax=lmax,
                        iter=0,
                        pol=False,
                        use_weights=True,
                        datapath=os.environ['HEALPIXDATA'])
        #remove SN
        cl -= 1. / nbar
        cls.append(cl)
        cpt += 1

    clm = np.mean(cls, 0)
    covmat = np.cov(np.transpose(cls))

    if write:
        dirout = os.path.join(dirin, "..", "shell{:d}".format(ishell))
        os.makedirs(dirout, exist_ok=True)
        clname = "clmean.fits"
        if not rsd:
            clname = "clmean_norsd.fits"
        f1 = os.path.join(dirout, clname)
        hp.write_cl(f1, clm, overwrite=True)
        covname = "covmat.fits"
        if not rsd:
            clname = "covmat_norsd.fits"
        f2 = os.path.join(dirout, "covmat.fits")
        hdu = fits.ImageHDU(covmat)
        hdu.writeto(f2, overwrite=True)

        print("writing {} and {}".format(f1, f2))

    return clm, covmat
Esempio n. 39
0
    tickfs(ax)
    plt.loglog()
    plt.savefig("../plots_paper/cls_lss.pdf",bbox_inches='tight')
    plt.show()

if (o.whichfig==4) or (o.whichfig==-1) :
    #Plotting LSS contaminant power spectra
    l,cltt,clee,clbb,clte,nltt,nlee,nlbb,nlte=np.loadtxt("cls_lss.txt",unpack=True)
    ll=l[:3*nside_lss]; cl_x=cltt[:3*nside_lss]; cw_x=clee[:3*nside_lss]
    
    msk_s=hp.read_map("mask_lss_ns%d.fits"%nside_lss,verbose=False); fsky=np.mean(msk_s)
    l_s=hp.read_map("cont_lss_star_ns%d.fits"%nside_lss,verbose=False)
    l_d=hp.read_map("cont_lss_dust_ns%d.fits"%nside_lss,verbose=False)
    w_pq,w_pu=hp.read_map("cont_wl_psf_ns%d.fits"%nside_lss,verbose=False,field=[0,1])
    w_sq,w_su=hp.read_map("cont_wl_ss_ns%d.fits"%nside_lss ,verbose=False,field=[0,1])
    cl_d,cw_pe,cw_pb,_,_,_=hp.anafast([l_d*msk_s,w_pq*msk_s,w_pu*msk_s],pol=True,iter=0)/fsky
    cl_s,cw_se,cw_sb,_,_,_=hp.anafast([l_s*msk_s,w_sq*msk_s,w_su*msk_s],pol=True,iter=0)/fsky

    def rebin_and_plot(x,y,b,lt,c,ax,lb=None) :
        xp=np.mean(x.reshape([len(x)//b,b]),axis=1)
        yp=np.mean(y.reshape([len(x)//b,b]),axis=1)
        if lb is None :
            ax.plot(xp,yp,lt,c=c)
        else :
            ax.plot(xp,yp,lt,c=c,label=lb)
    plt.figure(figsize=(7,8))
    plt.subplots_adjust(hspace=0)
    ax1=plt.subplot(311)
    c_x='#000099'; c_d='#00CCCC'; c_s='#CC0000'; c_t='#FF9933'; rb=8
    rebin_and_plot(ll,cl_x,rb,'-',c_x,ax1,lb='Signal')
    rebin_and_plot(ll,cl_d,rb,'--',c_d,ax1,lb='Dust')
Esempio n. 40
0
def CreateAnafastPartialSky(cl,
                            nside,
                            lmin,
                            lmax,
                            delta_ell,
                            f_sky=1.,
                            plot_results=False,
                            noise_rms=0):
    import qubic.NamasterLib as nam

    npix = 12 * nside**2

    # Determine SEEN pixels from f_sky using query_disc
    vec = hp.pixelfunc.ang2vec(np.pi / 2, np.pi * 3 / 4)
    radius = f_sky * np.pi

    ipix_disc = hp.query_disc(nside=nside, vec=vec, radius=radius, nest=False)
    while len(ipix_disc) < f_sky * npix:
        radius += 0.01 * np.pi
        ipix_disc = hp.query_disc(nside=nside,
                                  vec=vec,
                                  radius=radius,
                                  nest=False)
    #print("npix_partial_sky: ", len(ipix_disc))

    m = np.arange(npix)
    m = np.delete(m, ipix_disc, axis=None)

    # Define the seen pixels
    seenpix = ipix_disc

    ### Making mask - it will be automaticall apodized when instanciating the object with default (tunable) parameters
    mask = np.zeros(npix)
    mask[seenpix] = 1
    Namaster = nam.Namaster(mask, lmin=lmin, lmax=lmax, delta_ell=delta_ell)

    if plot_results:
        if not os.path.isdir(path_):
            os.mkdir(path_)
        plt.figure()
        hp.mollview(mask)
        figname = 'fig_map_partial_mask.png'
        dest = os.path.join(path_, figname)
        plt.savefig(dest)  # write image to file
        plt.clf()
        plt.figure()
        mask_apo = Namaster.mask_apo
        hp.mollview(mask_apo)
        figname = 'fig_map_partial_mask_apo.png'
        dest = os.path.join(path_, figname)
        plt.savefig(dest)  # write image to file
        plt.clf()

    ell_binned, b = Namaster.get_binning(nside)
    # Get binned input spectra
    cl_theo_binned = np.zeros(shape=(4, ell_binned.shape[0]))
    for i in range(4):
        cl_theo_binned[i, :] = Namaster.bin_spectra(cl.T[i, :], nside)
    print(cl_theo_binned.shape)

    # Create map
    map_ = hp.synfast(cl.T, nside, pixwin=False, verbose=False, new=True)
    noise = np.random.randn(npix) * noise_rms
    map_ = map_ + noise

    # constructing partial map
    map_partial = map_.copy()

    # Set UNSEEN pixels to zero for NaMaster
    map_partial[:, m] = 0

    # Get spectra
    leff, dells, w = Namaster.get_spectra(map_partial,
                                          purify_e=True,
                                          purify_b=False,
                                          beam_correction=None,
                                          pixwin_correction=None,
                                          verbose=False)
    dells = dells.T

    if plot_results:

        clnames = ['TT', 'EE', 'BB', 'TE']
        ll = np.arange(cl.shape[0])
        #rc('figure', figsize=(12, 8))
        plt.figure(figsize=(12, 8))
        for i in range(dells.shape[0]):
            plt.subplot(2, 2, i + 1)
            plt.plot(ll,
                     ll * (ll + 1) * cl[:, i] / (2 * np.pi),
                     label="Input spectra")
            plt.plot(leff,
                     leff * (leff + 1) * cl_theo_binned[i, :] / (2 * np.pi),
                     "o",
                     label="Binned input spectra")
            plt.plot(leff, dells[i], label="NaMaster")
            plt.xlabel('$\\ell$')
            plt.ylabel('$D_\\ell$')
            plt.title(clnames[i])
            plt.legend()
        plt.tight_layout()
        figname = 'fig_theor_namaster_all_Dl.png'
        dest = os.path.join(path_, figname)
        plt.savefig(dest)  # write image to file
        plt.clf()

    # Anafast spectrum of this map
    # Set UNSEEN pixels to hp.UNSEEN for Anafast
    map_partial[:, m] = hp.UNSEEN
    cl_ana, alm_ana = hp.anafast(map_partial, alm=True, lmax=lmax)

    # Get binned anafast spectra
    cl_ana_binned = np.zeros(shape=(4, ell_binned.shape[0]))
    for i in range(4):
        cl_ana_binned[i, :] = Namaster.bin_spectra(cl_ana[i, :], nside)

    if plot_results:

        mapnames = ['T', 'Q', 'U']
        for i in range(3):
            plt.figure()
            hp.mollview(map_partial[i])
            figname = 'fig_map_partial_{}.png'.format(mapnames[i])
            dest = os.path.join(path_, figname)
            plt.savefig(dest)  # write image to file
            plt.clf()

        for i in range(4):
            # Plot theoretical and anafast spectra
            plt.figure()
            plt.plot(ll, ll * (ll + 1) * cl_ana[i][:lmax + 1], label="Anafast")
            plt.plot(leff,
                     leff * (leff + 1) * cl_ana_binned[i],
                     "o",
                     label="Anafast binned")
            plt.plot(ll, ll * (ll + 1) * cl.T[i], 'r', label="Input spectra")
            plt.xlim(0, max(ll))
            plt.title(clnames[i])
            plt.ylabel(r"$\ell (\ell + 1) C_{\ell}^{" + clnames[i] + r"}$")
            plt.legend()
            figname = 'fig_theor_anaf_{}.png'.format(clnames[i])
            dest = os.path.join(path_, figname)
            plt.savefig(dest)  # write image to file
            plt.clf()

    return dells, alm_ana, cl_theo_binned, cl_ana_binned
Esempio n. 41
0
#np.save('cl_PySM_dust_TQU_ns4096.fits', cl_dust)

#SYNCH
synchT = hp.read_map(
    '/global/homes/k/krach/usr/python/PySM_public/pysm/SO_template/synch_T.fits'
)
synchQ = hp.read_map(
    '/global/homes/k/krach/usr/python/PySM_public/pysm/SO_template/synch_Q.fits'
)
synchU = hp.read_map(
    '/global/homes/k/krach/usr/python/PySM_public/pysm/SO_template/synch_U.fits'
)
synch_pysm = np.array([synchT, synchQ, synchU])
synch4096 = add_gaussian_small_scales(synch_pysm, 4096, pol=True)
hp.write_map('maps/PySM_synch_TQU_ns4096_2.fits', synch4096, overwrite=True)
cl_synch = hp.anafast(synch4096)
np.save('cl_PySM_synch_TQU_ns4096_2.fits', cl_synch)

##FREE-FREE
#ffT = hp.read_map('/global/homes/k/krach/usr/python/PySM_public/pysm/SO_template/freefree_T.fits')
#ff4096 = add_gaussian_small_scales(ffT, 4096, pol=False)
#hp.write_map('maps/PySM_freefree_T_ns4096.fits', ff4096, overwrite=True)
#cl_ff = hp.anafast(ff4096)
#np.save('cl_PySM_freefree_T_ns4096.fits', cl_ff)

##AME 1
#ame1 = hp.read_map('/global/homes/k/krach/usr/python/PySM_public/pysm/SO_template/ame_T.fits')
#ame1_4096 = add_gaussian_small_scales(ame1, 4096, pol=False)
#hp.write_map('maps/PySM_ame1_T_ns4096.fits', ame1_4096, overwrite=True)
#cl_ame1 = hp.anafast(ame1_4096)
#np.save('cl_PySM_ame1_T_ns4096.fits', cl_ame1)
Esempio n. 42
0
def polsample_test(niter=1000):
    import camb
    from camb import model, initialpower
    pars = camb.CAMBparams()
    #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency
    pars.set_cosmology(H0=67.5,
                       ombh2=0.022,
                       omch2=0.122,
                       mnu=0.06,
                       omk=0,
                       tau=0.06)
    pars.WantTensors = True
    pars.InitPower.set_params(ns=0.965, r=0.05)
    pars.set_for_lmax(2500, lens_potential_accuracy=0)
    results = camb.get_results(pars)
    powers = results.get_cmb_power_spectra(pars, CMB_unit='muK')

    var = 1e-4
    nside = 8
    lmax = 3 * nside - 1
    ell = np.arange(lmax + 1.)
    Cl_arr = powers['total'][:lmax + 1].T
    Z = ell * (ell + 1) / (2 * np.pi)
    Z[:2] = 1.


    Cls = np.array([Cl_arr[0]/Z, Cl_arr[1]/Z, Cl_arr[2]/Z,\
                    Cl_arr[3]/Z, 0*Cl_arr[0], 0*Cl_arr[0]])
    plt.figure()
    for i in range(4):
        plt.subplot(2, 2, i + 1)
        plt.loglog(ell[2:], Cls[i][2:], color='C{0}'.format(i))

    s_true = hp.synfast(Cls, nside, new=True)
    m = np.copy(s_true)
    inds = (mask == 0)
    for i in range(3):
        m[i] = s_true[i] + np.random.randn(npix) * var**0.5
        m[i][inds] = 0
    Clhat_true = hp.anafast(s_true)
    Clhat_noise = hp.anafast(m)
    for i in range(4):
        plt.subplot(2, 2, i + 1)
        plt.loglog(ell[2:], Clhat_true[i][2:], '.', color='C{0}'.format(i))
    for i in range(4):
        plt.subplot(2, 2, i + 1)
        plt.loglog(ell[2:], Clhat_noise[i][2:], 'o', color='C{0}'.format(i))
    plt.savefig('1.png')
    #plt.show()

    plt.figure()
    plt.suptitle('Input')
    hp.mollview(s_true[0], min=-200, max=200, sub=131, title='')
    hp.mollview(s_true[1], min=-0.5, max=0.5, sub=132, title='')
    hp.mollview(s_true[2], min=-0.5, max=0.5, sub=133, title='')
    plt.savefig('2.png')
    #plt.show()

    plt.figure()
    Clhat = hp.anafast(m)
    s = np.copy(m)
    Cli = np.copy(Cls)
    for n in range(niter):
        print(n, niter)
        si = maparr_sample(Cli, m, var=var)
        Cli = clarr_sample(si)
        s = np.vstack((s, si))
        Clhat = np.vstack((Clhat, Cli))

        for j in range(4):
            plt.subplot(2, 2, j + 1)
            plt.plot(ell[2:], Cli[j][2:], '.', alpha=0.05,\
                    color='C{0}'.format(j))

        plt.figure()
        hp.mollview(si[0],
                    min=-200,
                    max=200,
                    sub=131,
                    title='',
                    cbar=False,
                    cmap=cmap)
        hp.mollview(si[1],
                    min=-.5,
                    max=.5,
                    sub=132,
                    title='',
                    cbar=False,
                    cmap=cmap)
        hp.mollview(si[2],
                    min=-.5,
                    max=.5,
                    sub=133,
                    title='',
                    cbar=False,
                    cmap=cmap)
        fnames = glob('realization_*')
        plt.savefig('realization_{0}.png'.format(str(len(fnames)).zfill(4)))
        plt.close()

    for i in range(4):
        plt.subplot(2, 2, i + 1)
        plt.plot(ell[2:], Cls[i][2:], 'k')
    for i in range(4):
        plt.subplot(2, 2, i + 1)
        plt.plot(ell[2:], Clhat_true[i][2:], 'k.')
        plt.yscale('log')
        plt.xscale('log')
    plt.savefig('3.png')
    #plt.show()

    np.save('map_samples.npy', s)
    np.save('cl_samples.npy', clhat)

    plt.figure()
    plt.suptitle('Output')
    hp.mollview(si[0], min=-200, max=200, sub=131, title='')
    hp.mollview(si[1], min=-0.5, max=0.5, sub=132, title='')
    hp.mollview(si[2], min=-0.5, max=0.5, sub=133, title='')

    plt.savefig('4.png')
    #plt.show()

    return
Esempio n. 43
0
    cldict_normal_test = calculations.ilc_foreground_cleaning.polarized_ilc_reconstruction(
        frequencies=np.array([200., 270., 350., 600.]) * 1.e9,
        fname=fname,
        regnoise=regnoise,
        lensed=lensed,
        modcov=modcov,
        verbose=True)
    save_dict_to_hd5(cntpath, cldict_normal_test)
clnpath = os.path.abspath(datapath + 'cldict_noise.hd5')
if os.path.exists(clnpath):
    print("cldict_noise already exists at {0}. Loading it.".format(clnpath))
    cldict_noise = read_dict_from_hd5(clnpath)
else:
    print("Computing noise C_l's.")
    noisemap = cldict_normal_test['noisemaps'][0][0]
    cls_noise = hp.anafast([noisemap, noisemap, noisemap])
    labels = ['TT', 'EE', 'BB', 'TE', 'EB', 'TB']
    cldict_noise = {labels[i]: cls_noise[i] for i in range(len(labels))}
    save_dict_to_hd5(clnpath, cldict_noise)
cldict_noise['ell'] = np.arange(len(cldict_noise['TT']), dtype='float')

prefix_noise = cldict_noise['ell'] * (cldict_noise['ell'] + 1) / (2 * np.pi)
print("Finished importing calibration_gain.")
print("=" * 80)


def myplot(cld,
           name,
           label,
           nf=1.,
           bbmax=0.1,