def consensus_run(args, networks, heats, verbose): # Perform the single runs single_runs = [] for (infmat, indexToGene, G, nname, pnp), (heat, hname) in product(networks, heats): # Simple progress bar if args.verbose > 0: print '\t-', nname, hname # 1) Filter the heat scores # 1a) Remove enes not in the network heat = filter_heat_to_network_genes(heat, set(indexToGene.values()), verbose) # 1b) Genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = filter_heat( heat, None, False, 'There are ## genes with heat score 0') if args.verbose > 1: print "\t\t- Loaded '%s' heat scores for %s genes" % (hname, len(heat)) result = run_helper(args, infmat, indexToGene, G, nname, pnp, heat, hname, addtl_genes, get_deltas_hotnet2, HN2_INFMAT_NAME, HN2_MAX_CC_SIZES, args.verbose) single_runs.append((nname, hname, result)) # Perform the consensus consensus, linkers, auto_deltas = identify_consensus(single_runs, verbose=verbose) return single_runs, consensus, linkers, auto_deltas
def consensus_run(args, networks, heats, verbose): # Perform the single runs single_runs = [] """Change from here""" #single_permuted_sub_score_delta = [] #single_subnet_score_delta = [] #single_Alpha_sig_delta = [] #signle_Subnet_sig_delta = [] #single_Conp_sig_delta = [] #single_sig_Count_delta = [] #single_sig_Conp_delta = [] #single_degree_delta = [] #single_permuted_degree_delta = [] #single_cent_weighted_score_delta = [] #single_degree_weighted_score_delta = [] single_My_results = [] """end here""" for (infmat, indexToGene, G, nname, pnp), (heat, hname) in product(networks, heats): # Simple progress bar if args.verbose > 0: print '\t-', nname, hname # 1) Filter the heat scores # 1a) Remove enes not in the network heat = filter_heat_to_network_genes(heat, set(indexToGene.values()), verbose) # 1b) Genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = filter_heat( heat, None, False, 'There are ## genes with heat score 0') if args.verbose > 1: print "\t\t- Loaded '%s' heat scores for %s genes" % (hname, len(heat)) result, My_results = run_helper(args, infmat, indexToGene, G, nname, pnp, heat, hname, addtl_genes, get_deltas_hotnet2, HN2_INFMAT_NAME, HN2_MAX_CC_SIZES, args.verbose) single_runs.append((nname, hname, result)) single_My_results.append((nname, hname, My_results)) """Change from here""" #single_permuted_sub_score_delta.append((nname, hname,permuted_sub_score_delta)) #single_subnet_score_delta.append((nname, hname,subnet_geneScore_delta)) #single_Alpha_sig_delta.append((nname, hname,Alpha_sig_delta)) #signle_Subnet_sig_delta.append((nname, hname,Subnet_sig_delta)) #single_Conp_sig_delta.append((nname, hname,Conp_sig_delta)) #single_sig_Conp_delta.append((nname, hname,sig_Conp_delta)) #single_sig_Count_delta.append((nname, hname,sig_Count_delta)) #single_degree_delta.append((nname,hname,degree_delta)) #single_permuted_degree_delta.append((nname,hname,permuted_degree_delta)) #single_cent_weighted_score_delta.append((nname,hname,cent_weighted_score_delta)) #single_degree_weighted_score_delta.append((nname,hname,degree_weighted_score_delta)) """End here""" # Perform the consensus consensus, linkers, auto_deltas = identify_consensus(single_runs, verbose=verbose) #print single_degree_delta return single_runs, single_My_results, consensus, linkers, auto_deltas
def consensus_with_stats(args, networks, heats, verbose=0): # Run with the input heat """Change here, add the single_permuted_sub_score_delta output""" single_runs, single_My_results, consensus, linkers, auto_deltas = consensus_run( args, networks, heats, verbose) # Generate permuted heats np = args.consensus_permutations permuted_single_runs = defaultdict(list) for (infmat, indexToGene, G, nname, pnp), (heat, hname) in product(networks, heats): # 1) Filter the heat scores # 1a) Remove enes not in the network heat = filter_heat_to_network_genes(heat, set(indexToGene.values()), verbose) # 1b) Genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = filter_heat( heat, None, False, 'There are ## genes with heat score 0') for permutation in permute_heat(heat, indexToGene.values(), np, addtl_genes, args.num_cores): result, Myresult = run_helper(args, infmat, indexToGene, G, nname, pnp, heat, hname, addtl_genes, get_deltas_hotnet2, HN2_INFMAT_NAME, HN2_MAX_CC_SIZES, verbose=verbose) permuted_single_runs[(hname, nname)].append(result) # Run consensus to compute observed statistics network_heat_pairs = permuted_single_runs.keys() permuted_counts = [] for i in range(args.heat_permutations): runs = [(n, h, permuted_single_runs[(n, h)][i]) for n, h in network_heat_pairs] permuted_consensus, _, _ = identify_consensus(runs, verbose=verbose) permuted_counts.append(count_consensus(permuted_consensus)) # Summarize stats consensus_stats = dict() for k, count in count_consensus(consensus).iteritems(): empirical = [permuted_count[k] for permuted_count in permuted_counts] if np == 0: pval = 1. expected = 0. else: expected = numpy.mean(empirical) pval = sum(1. for p in empirical if p >= count) / np consensus_stats[k] = dict(observed=count, expected=expected, pval=pval) return single_runs, single_My_results, consensus, linkers, auto_deltas, consensus_stats
def load_direct_heat(args): heat = hnio.load_heat_tsv(args.heat_file) heat, score_excluded_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) filter_excluded_genes = [] if args.gene_filter_file: heat, filter_excluded_genes = hnheat.expr_filter_heat(heat, hnio.load_genes(args.gene_filter_file)) #ensure that all heat scores are positive bad_genes = [gene for gene in heat if heat[gene] < 0] if bad_genes: raise ValueError("ERROR: All gene heat scores must be non-negative. There are %s genes with\ negative heat scores: %s" % (len(bad_genes), bad_genes)) return heat, list(set(score_excluded_genes + filter_excluded_genes))
def load_direct_heat(args): heat = hnio.load_heat_tsv(args.heat_file) heat, score_excluded_genes, args.min_heat_score = hnheat.filter_heat( heat, args.min_heat_score) filter_excluded_genes = [] if args.gene_filter_file: heat, filter_excluded_genes = hnheat.expr_filter_heat( heat, hnio.load_genes(args.gene_filter_file)) #ensure that all heat scores are positive bad_genes = [gene for gene in heat if heat[gene] < 0] if bad_genes: raise ValueError( "ERROR: All gene heat scores must be non-negative. There are %s genes with\ negative heat scores: %s" % (len(bad_genes), bad_genes)) return heat, list(set(score_excluded_genes + filter_excluded_genes))
def consensus_with_stats(args, networks, heats, verbose=0): # Run with the input heat single_runs, consensus, linkers, auto_deltas = consensus_run( args, networks, heats, verbose ) # Generate permuted heats np = args.consensus_permutations permuted_single_runs = defaultdict(list) for (infmat, indexToGene, G, nname, pnp), (heat, hname) in product(networks, heats): # 1) Filter the heat scores # 1a) Remove genes not in the network heat = filter_heat_to_network_genes(heat, set(indexToGene.values()), verbose) # 1b) Genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = filter_heat(heat, None, False, 'There are ## genes with heat score 0') for permutation in permute_heat(heat, indexToGene.values(), np, addtl_genes, args.num_cores): result = run_helper(args, infmat, indexToGene, G, nname, pnp, heat, hname, addtl_genes, get_deltas_hotnet2, HN2_INFMAT_NAME, HN2_MAX_CC_SIZES, verbose=verbose) permuted_single_runs[(hname, nname)].append(result) # Run consensus to compute observed statistics network_heat_pairs = permuted_single_runs.keys() permuted_counts = [] for i in range(np): runs = [ (n, h, permuted_single_runs[(n, h)][i]) for n, h in network_heat_pairs ] permuted_consensus, _, _ = identify_consensus( runs, verbose=verbose ) permuted_counts.append(count_consensus(permuted_consensus)) # Summarize stats consensus_stats = dict() for k, count in count_consensus(consensus).iteritems(): empirical = [ permuted_count[k] for permuted_count in permuted_counts ] if np == 0: pval = 1. expected = 0. else: expected = numpy.mean(empirical) pval = sum(1. for p in empirical if p >= count )/np consensus_stats[k] = dict(observed=count, expected=expected, pval=pval) return single_runs, consensus, linkers, auto_deltas, consensus_stats
def consensus_run(args, networks, heats, verbose): # Perform the single runs single_runs = [] for (infmat, indexToGene, G, nname, pnp), (heat, hname) in product(networks, heats): # Simple progress bar if args.verbose > 0: print '\t-', nname, hname # 1) Filter the heat scores # 1a) Remove enes not in the network heat = filter_heat_to_network_genes(heat, set(indexToGene.values()), verbose) # 1b) Genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = filter_heat(heat, None, False, 'There are ## genes with heat score 0') if args.verbose > 1: print "\t\t- Loaded '%s' heat scores for %s genes" % (hname, len(heat)) result = run_helper(args, infmat, indexToGene, G, nname, pnp, heat, hname, addtl_genes, get_deltas_hotnet2, HN2_INFMAT_NAME, HN2_MAX_CC_SIZES, args.verbose) single_runs.append( (nname, hname, result) ) # Perform the consensus consensus, linkers, auto_deltas = identify_consensus( single_runs, verbose=verbose ) return single_runs, consensus, linkers, auto_deltas
def run_helper(args, infmat_name, get_deltas_fn, extra_delta_args): """Helper shared by simpleRun and simpleRunClassic. """ # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = hnio.load_infmat(args.infmat_file, infmat_name) full_index2gene = hnio.load_index(args.infmat_index_file) using_json_heat = os.path.splitext(args.heat_file.lower())[1] == '.json' if using_json_heat: heat = json.load(open(args.heat_file))['heat'] else: heat = hnio.load_heat_tsv(args.heat_file) print "* Loaded heat scores for %s genes" % len(heat) # filter out genes not in the network heat = hnheat.filter_heat_to_network_genes(heat, set(full_index2gene.values())) # genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = hnheat.filter_heat(heat, None, False, 'There are ## genes with heat score 0') deltas = get_deltas_fn(full_index2gene, heat, args.delta_permutations, args.num_cores, infmat, addtl_genes, *extra_delta_args) sim, index2gene = hn.similarity_matrix(infmat, full_index2gene, heat, True) results_files = [] for delta in deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, index2gene, delta, directed=True) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, full_index2gene.values(), args.significance_permutations, addtl_genes, args.num_cores) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, full_index2gene, heat_permutations, delta, sizes, True, args.num_cores) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.significance_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output if not using_json_heat: heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta # include delta in parameters section of output JSON output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() results_files.append( os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT ) hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # create the hierarchy if necessary if args.output_hierarchy: from bin import createDendrogram as CD hierarchy_out_dir = '{}/hierarchy/'.format(args.output_directory) if not os.path.isdir(hierarchy_out_dir): os.mkdir(hierarchy_out_dir) params = vars(args) CD.createDendrogram( sim, index2gene.values(), hierarchy_out_dir, params, verbose=False) hierarchyFile = '{}/viz_files/{}'.format(str(hn.__file__).rsplit('/', 1)[0], HIERARCHY_WEB_FILE) shutil.copy(hierarchyFile, '{}/index.html'.format(hierarchy_out_dir)) # write visualization output if edge file given if args.edge_file: from bin import makeResultsWebsite as MRW viz_args = [ "-r" ] + results_files viz_args += ["-ef", args.edge_file, "-o", args.output_directory + "/viz" ] if args.network_name: viz_args += [ "-nn", args.network_name ] if args.display_score_file: viz_args += [ "-dsf", args.display_score_file ] if args.display_name_file: viz_args += [ "-dnf", args.display_name_file ] MRW.run( MRW.get_parser().parse_args(viz_args) )
def run_helper(args, infmat_name, get_deltas_fn, extra_delta_args): """Helper shared by simpleRun and simpleRunClassic. """ # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[infmat_name] full_index2gene = hnio.load_index(args.infmat_index_file) using_json_heat = os.path.splitext(args.heat_file.lower())[1] == '.json' if using_json_heat: heat = json.load(open(args.heat_file))['heat'] else: heat = hnio.load_heat_tsv(args.heat_file) print "* Loaded heat scores for %s genes" % len(heat) # filter out genes not in the network heat = hnheat.filter_heat_to_network_genes(heat, set(full_index2gene.values())) # genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = hnheat.filter_heat(heat, None, False, 'There are ## genes with heat score 0') deltas = get_deltas_fn(full_index2gene, heat, args.delta_permutations, args.num_cores, infmat, addtl_genes, *extra_delta_args) sim, index2gene = hn.similarity_matrix(infmat, full_index2gene, heat, True) results_files = [] for delta in deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, index2gene, delta, directed=True) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, full_index2gene.values(), args.significance_permutations, addtl_genes, args.num_cores) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, full_index2gene, heat_permutations, delta, sizes, True, args.num_cores) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.significance_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output if not using_json_heat: heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta # include delta in parameters section of output JSON output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() results_files.append( os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT ) hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # write visualization output if edge file given if args.edge_file: from bin import makeResultsWebsite as MRW viz_args = [ "-r" ] + results_files viz_args += ["-ef", args.edge_file, "-o", args.output_directory + "/viz" ] if args.network_name: viz_args += [ "-nn", args.network_name ] if args.display_score_file: viz_args += [ "-dsf", args.display_score_file ] MRW.run( MRW.get_parser().parse_args(viz_args) )
def run(args): # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. ") print("(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[INFMAT_NAME] infmat_index = hnio.load_index(args.infmat_index_file) heat = hnio.load_heat_tsv(args.heat_file) # filter out genes with heat score less than min_heat_score heat, addtl_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) # find delta that maximizes # CCs of size >= MIN_SIZE for each permuted data set deltas = ft.get_deltas_for_heat(infmat, infmat_index, heat, addtl_genes, args.num_permutations, args.parallel) #find the multiple of the median delta s.t. the size of the largest CC in the real data #is <= MAX_CC_SIZE medianDelta = np.median(deltas[MIN_CC_SIZE]) M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()), quiet=False) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) for i in range(1, 11): G = hn.weighted_graph(sim, gene_index, i*medianDelta) max_cc_size = max([len(cc) for cc in hn.connected_components(G)]) if max_cc_size <= MAX_CC_SIZE: break # load interaction network edges and determine location of static HTML files for visualization edges = hnio.load_ppi_edges(args.edge_file) if args.edge_file else None index_file = '%s/viz_files/%s' % (os.path.realpath(__file__).rsplit('/', 1)[0], VIZ_INDEX) subnetworks_file = '%s/viz_files/%s' % (os.path.realpath(__file__).rsplit('/', 1)[0], VIZ_SUBNETWORKS) gene2index = dict([(gene, index) for index, gene in list(infmat_index.items())]) #and run HotNet with that multiple and the next 4 multiples run_deltas = [i*medianDelta for i in range(i, i+5)] for delta in run_deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, gene_index, delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print("* Performing permuted heat statistical significance...") heat_permutations = p.permute_heat(heat, args.num_permutations, addtl_genes, args.parallel) sizes = list(range(2, 11)) print("\t- Using no. of components >= k (k \\in") print("[%s, %s]) as statistic" % (min(sizes), max(sizes))) sizes2counts = stats.calculate_permuted_cc_counts(infmat, infmat_index, heat_permutations, delta, sizes, args.parallel) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(list(zip(sizes, real_counts))) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.num_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # write visualization output if edge file given if args.edge_file: viz_data = {"delta": delta, 'subnetworks': list()} for cc in ccs: viz_data['subnetworks'].append(viz.get_component_json(cc, heat, edges, gene2index, args.network_name)) delta_viz_dir = '%s/viz/delta%s' % (args.output_directory, delta) if not os.path.isdir(delta_viz_dir): os.makedirs(delta_viz_dir) viz_out = open('%s/subnetworks.json' % delta_viz_dir, 'w') json.dump(viz_data, viz_out, indent=4) viz_out.close() shutil.copy(subnetworks_file, delta_viz_dir) if args.edge_file: viz.write_index_file(index_file, '%s/viz/%s' % (args.output_directory, VIZ_INDEX), run_deltas)
def run(args): # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[INFMAT_NAME] infmat_index = hnio.load_index(args.infmat_index_file) heat = hnio.load_heat_tsv(args.heat_file) #filter out genes with heat score less than min_heat_score heat, addtl_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) #find delta that maximizes # CCs of size >= MIN_SIZE for each permuted data set deltas = ft.get_deltas_for_heat(infmat, infmat_index, heat, addtl_genes, args.num_permutations, args.parallel) #find the multiple of the median delta s.t. the size of the largest CC in the real data #is <= MAX_CC_SIZE medianDelta = np.median(deltas[MIN_CC_SIZE]) M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()), quiet=False) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) for i in range(1, 11): G = hn.weighted_graph(sim, gene_index, i*medianDelta) max_cc_size = max([len(cc) for cc in hn.connected_components(G)]) if max_cc_size <= MAX_CC_SIZE: break #and run HotNet with that multiple and the next 4 multiples run_deltas = [i*medianDelta for i in range(i, i+5)] for delta in run_deltas: #create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) #find connected components G = hn.weighted_graph(sim, gene_index, delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, args.num_permutations, addtl_genes, args.parallel) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, infmat_index, heat_permutations, delta, sizes, args.parallel) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.num_permutations) #sort ccs list such that genes within components are sorted alphanumerically, and components #are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs)
def run(args): # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[INFMAT_NAME] infmat_index = hnio.load_index(args.infmat_index_file) heat = hnio.load_heat_tsv(args.heat_file) # filter out genes with heat score less than min_heat_score heat, addtl_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) # find delta that maximizes # CCs of size >= MIN_SIZE for each permuted data set deltas = ft.get_deltas_for_heat(infmat, infmat_index, heat, addtl_genes, args.num_permutations, args.parallel) #find the multiple of the median delta s.t. the size of the largest CC in the real data #is <= MAX_CC_SIZE medianDelta = np.median(deltas[MIN_CC_SIZE]) M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()), quiet=False) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) for i in range(1, 11): G = hn.weighted_graph(sim, gene_index, i*medianDelta) max_cc_size = max([len(cc) for cc in hn.connected_components(G)]) if max_cc_size <= MAX_CC_SIZE: break # load interaction network edges and determine location of static HTML files for visualization edges = hnio.load_ppi_edges(args.edge_file) if args.edge_file else None index_file = '%s/viz_files/%s' % (os.path.realpath(__file__).rsplit('/', 1)[0], VIZ_INDEX) subnetworks_file = '%s/viz_files/%s' % (os.path.realpath(__file__).rsplit('/', 1)[0], VIZ_SUBNETWORKS) gene2index = dict([(gene, index) for index, gene in infmat_index.iteritems()]) #and run HotNet with that multiple and the next 4 multiples run_deltas = [i*medianDelta for i in range(i, i+5)] for delta in run_deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, gene_index, delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, args.num_permutations, addtl_genes, args.parallel) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, infmat_index, heat_permutations, delta, sizes, args.parallel) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.num_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # write visualization output if edge file given if args.edge_file: viz_data = {"delta": delta, 'subnetworks': list()} for cc in ccs: viz_data['subnetworks'].append(viz.get_component_json(cc, heat, edges, gene2index, args.network_name)) delta_viz_dir = '%s/viz/delta%s' % (args.output_directory, delta) if not os.path.isdir(delta_viz_dir): os.makedirs(delta_viz_dir) viz_out = open('%s/subnetworks.json' % delta_viz_dir, 'w') json.dump(viz_data, viz_out, indent=4) viz_out.close() shutil.copy(subnetworks_file, delta_viz_dir) if args.edge_file: viz.write_index_file(index_file, '%s/viz/%s' % (args.output_directory, VIZ_INDEX), run_deltas)