def test_update_until(): model = BmiHeat() model.initialize() model.update_until(10.1) assert_almost_equal(model.get_current_time(), 10.1)
h.timestep = seconds_per_day # run the model forward in time forced by the surface temperature. while h.get_current_time() < duration_years * seconds_per_year: # calculate the time to run until. run_until = min([h.get_current_time() + seconds_per_year, duration_years*seconds_per_year]) # determine the current surface temperature current_time = h.get_current_time()/seconds_per_year current_temperature_change = surface_temperature_change(current_time) # set the surface temperature in the model. h.set_value_at_indices("temperature", [0], T_init[0] + current_temperature_change) # run forward in time. h.update_until(run_until) ######################################### # # # Step 3: Write Output in format # # Dakota expects # # # ######################################### # Each of the metrics listed in the Dakota .in file needs to be written to # the specified output file given by sys.argv[2]. This is how information is # sent back to Dakota. # Calculate the root mean squared error (rmse) interp_T = np.interp(df.Depth.values, model_z, h.get_value("temperature")) rmse = (np.mean((interp_T - df.Temperature.values) ** 2)) ** 0.5