Esempio n. 1
0
def simplify(img, hed_model_path):
    w, h = img.width, img.height
    size_thresh = 0.001 * w * h
    img = pil2cv(img)
    img = cv2.GaussianBlur(img, (3, 3), 0)
    img = cv2.GaussianBlur(img, (3, 3), 0)
    img = hed_processing.run_hed(cv2pil(img), hed_model_path)
    ret, img = cv2.threshold(pil2cv(img), 50, 255, 0)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = remove_small_objects(img.astype('bool'), size_thresh)
    img = 255 * skeletonize(img).astype('uint8')
    img = cv2pil(img)
    return img
Esempio n. 2
0
def main(args):
    input_src, shuffle, max_num_images, min_w, min_h, max_w, max_h = args.input_src, args.shuffle, args.max_num_images, args.min_dim, args.min_dim, args.max_dim, args.max_dim
    output_dir, out_w, out_h, pct_test, save_mode, save_ext = args.output_dir, args.w, args.h, args.pct_test, args.save_mode, args.save_ext
    num_per, frac, frac_vary, max_ang_rot, max_stretch, centered = args.num_per, args.frac, args.frac_vary, args.max_ang_rot, args.max_stretch, args.centered
    action, target_face_image, face_crop, face_crop_lerp, landmarks_path, hed_model_path = args.action, args.target_face_image, args.face_crop, args.face_crop_lerp, args.landmarks_path, args.hed_model_path

    #os.system('rm -rf %s'%output_dir)

    # get list of actions
    actions = action.split(',')
    if False in [a in allowable_actions for a in actions]:
        raise Exception('one of your actions does not exist')

    # initialize face_processing if needed
    if 'face' in actions:
        initialize_face_processing(landmarks_path)
        target_encodings = get_encodings(
            target_face_image) if target_face_image else None

    # initialize photosketch if needed
    if 'sketch' in actions:
        photosketch_processing.setup(args.photosketch_model_path)

    # initialize esrgan if needed
    if 'upsample' in actions:
        esrgan_processing.setup(args.esrgan_model_path)

    # initialize SSS if needed
    if 'sss' in actions:
        sss_processing.setup(args.sss_model_path)

    # setup output directories
    if output_dir != 'None':
        trainA_dir, trainB_dir, testA_dir, testB_dir = setup_output_dirs(
            output_dir, save_mode, pct_test > 0)

    # initialize input
    ext = os.path.splitext(input_src)[1]
    is_movie = ext.lower() in ['.mp4', '.mov', '.avi']
    if is_movie:
        cap = cv2.VideoCapture(input_src)
        fps = video.FPS().start()
        num_images = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        pct_frames = list(np.linspace(0, 1, num_images))
        all_frames = get_frame_indexes(max_num_images, num_images, shuffle)

    else:
        images = sorted([
            f for f in os.listdir(input_src)
            if os.path.isfile(os.path.join(input_src, f))
        ])
        num_images = len(images)
        all_frames = get_frame_indexes(max_num_images, num_images, shuffle)

    # training/test split
    training = [1] * len(all_frames) * num_per
    if pct_test > 0:
        n_test = int(len(all_frames) * num_per * pct_test)
        test_per = 1.0 / pct_test
        test_idx = [int(test_per * (i + 1) - 1) for i in range(n_test)]
        for t in test_idx:
            training[t] = 0

    # iterate through each input
    print("Iterating through %d input images" % len(all_frames))
    for k, idx_frame in tqdm(enumerate(all_frames)):
        if is_movie:
            pct_frame = pct_frames[idx_frame]
            frame = int(pct_frame * num_images)
            cap.set(1, frame)
            ret, img = cap.read()
            frame_name = 'frame%06d' % frame
            img = cv2pil(img)
        else:
            img_path = images[idx_frame]
            frame_name = os.path.splitext(img_path)[0]
            full_image_path = os.path.join(input_src, img_path)
            img = Image.open(full_image_path).convert("RGB")

        # skip images which are too small or too big
        if img.width < min_w or img.height < min_h:
            continue
        if img.width > max_w or img.height > max_h:
            continue

        # first crop around face if requested
        if face_crop is not None:
            jx, jy, jw, jh = get_crop_around_face(img, target_encodings,
                                                  out_w / out_h, face_crop,
                                                  face_crop_lerp)
            img = img.crop((jx, jy, jx + jw, jy + jh))

        # preprocess/augment and produce input images
        imgs0, imgs1 = augmentation(img, num_per, out_w, out_h, frac,
                                    frac_vary, max_ang_rot, max_stretch,
                                    centered), []

        # process each input image to make output
        for img0 in imgs0:
            img = img0
            for a in actions:
                if a == 'segment':
                    img = segment(img)
                elif a == 'colorize':
                    colors = [[255, 255, 255], [0, 0, 0], [127, 0, 0],
                              [0, 0, 127], [0, 127, 0]]
                    img = quantize_colors(img, colors)
                elif a == 'trace':
                    img = trace(img)
                elif a == 'hed':
                    img = hed_processing.run_hed(img, hed_model_path)
                elif a == 'sketch':
                    img = photosketch_processing.sketch(img)
                elif a == 'simplify':
                    img = simplify(img, hed_model_path)
                elif a == 'face':
                    img = extract_face(img, target_encodings)
                elif a == 'sss':
                    img = sss_processing.run_sss(img)
                elif a == 'upsample':
                    img = esrgan_processing.upsample(img)
                    img = img.resize(
                        (int(img.width / 2), int(img.height / 2)),
                        resample=Image.BICUBIC)  # go from 4x to 2x
                elif a == 'none' or a == '':
                    pass
            imgs1.append(img)

        # save the images
        for i, (img0, img1) in enumerate(zip(imgs0, imgs1)):
            out_name = 'f%05d%s_%s.%s' % (idx_frame, '_%02d' % i if num_per > 1
                                          else '', frame_name, save_ext)
            is_train = training[num_per * k + i]

            if save_mode == 'combined':
                output_dir = trainA_dir if is_train else testA_dir
                img2 = Image.new('RGB', (out_w * 2, out_h))
                img2.paste(img1.convert('RGB'), (0, 0))
                img2.paste(img0.convert('RGB'), (out_w, 0))
                img2.save(os.path.join(output_dir, out_name), quality=97)

            else:

                if output_dir == 'None':
                    img1.convert('RGB').save(full_image_path, quality=97)
                else:
                    outputA_dir = trainA_dir if is_train else testA_dir
                    img1.convert('RGB').save(os.path.join(
                        outputA_dir, out_name),
                                             quality=97)
                    if save_mode == 'split':
                        outputB_dir = trainB_dir if is_train else testB_dir
                        img0.convert('RGB').save(os.path.join(
                            outputB_dir, out_name),
                                                 quality=97)
Esempio n. 3
0
def main(args):
    input_src, shuffle, max_num_images, min_w, min_h, max_w, max_h = args.input_src, args.shuffle, args.max_num_images, args.min_dim, args.min_dim, args.max_dim, args.max_dim
    output_dir, out_w, out_h, pct_test, save_mode, save_ext = args.output_dir, args.w, args.h, args.pct_test, args.save_mode, args.save_ext
    num_per, frac, frac_vary, max_ang_rot, max_stretch, centered = args.num_per, args.frac, args.frac_vary, args.max_ang_rot, args.max_stretch, args.centered
    action, target_face_image, face_crop, face_crop_lerp, landmarks_path, hed_model_path = args.action, args.target_face_image, args.face_crop, args.face_crop_lerp, args.landmarks_path, args.hed_model_path

    #os.system('rm -rf %s'%output_dir)

    # get list of actions
    actions = action.split(',')
    if False in [a in allowable_actions for a in actions]:
        raise Exception('one of your actions does not exist')

    # initialize face_processing if needed
    if 'face' in actions:
        initialize_face_processing(landmarks_path)
        target_encodings = get_encodings(target_face_image) if target_face_image else None

    # initialize photosketch if needed
    if 'sketch' in actions:
        photosketch_processing.setup(args.photosketch_model_path)

    # initialize esrgan if needed
    if 'upsample' in actions:
        esrgan_processing.setup(args.esrgan_model_path)

    # initialize SSS if needed
    if 'sss' in actions:
        sss_processing.setup(args.sss_model_path)

    # setup output directories
    if output_dir != 'None':
        trainA_dir, trainB_dir, testA_dir, testB_dir = setup_output_dirs(output_dir, save_mode, pct_test>0)

    # initialize input
    ext = os.path.splitext(input_src)[1]
    is_movie = ext.lower() in ['.mp4','.mov','.avi']
    if is_movie:
        cap = cv2.VideoCapture(input_src)
        fps = video.FPS().start()
        num_images = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        pct_frames = list(np.linspace(0, 1, num_images))
        all_frames = get_frame_indexes(max_num_images, num_images, shuffle)

    else:
        images = sorted([f for f in os.listdir(input_src) if os.path.isfile(os.path.join(input_src, f)) ])
        num_images = len(images)
        all_frames = get_frame_indexes(max_num_images, num_images, shuffle)

    # training/test split
    training = [1] * len(all_frames) * num_per
    if pct_test > 0:
        n_test = int(len(all_frames) * num_per * pct_test)
        test_per = 1.0 / pct_test
        test_idx = [int(test_per * (i+1) - 1) for i in range(n_test)]
        for t in test_idx:
            training[t] = 0

    # iterate through each input
    print("Iterating through %d input images" % len(all_frames))
    for k, idx_frame in tqdm(enumerate(all_frames)):
        if is_movie:
            pct_frame = pct_frames[idx_frame]
            frame = int(pct_frame * num_images)
            cap.set(1, frame);
            ret, img = cap.read()
            frame_name = 'frame%06d' % frame
            img = cv2pil(img)
        else:
            img_path = images[idx_frame]
            frame_name = os.path.splitext(img_path)[0]
            full_image_path = os.path.join(input_src, img_path)
            img = Image.open(full_image_path).convert("RGB")

        # skip images which are too small or too big
        if img.width < min_w or img.height < min_h:
            continue
        if img.width > max_w or img.height > max_h:
            continue

        # first crop around face if requested
        if face_crop is not None:
            jx, jy, jw, jh = get_crop_around_face(img, target_encodings, out_w/out_h, face_crop, face_crop_lerp)
            img = img.crop((jx, jy, jx + jw, jy + jh))

        # preprocess/augment and produce input images
        imgs0, imgs1 = augmentation(img, num_per, out_w, out_h, frac, frac_vary, max_ang_rot, max_stretch, centered), []

        # process each input image to make output
        for img0 in imgs0:
            img = img0
            for a in actions:
                if a == 'segment':
                    img = segment(img)
                elif a == 'colorize':
                    colors = [[255,255,255], [0,0,0], [127,0,0], [0, 0, 127], [0, 127, 0]]
                    img = quantize_colors(img, colors)
                elif a == 'trace':
                    img = trace(img)
                elif a == 'hed':
                    img = hed_processing.run_hed(img, hed_model_path)
                elif a == 'sketch':
                    img = photosketch_processing.sketch(img)
                elif a == 'simplify':
                    img = simplify(img, hed_model_path)
                elif a == 'face':
                    img = extract_face(img, target_encodings)
                elif a == 'sss':
                    img = sss_processing.run_sss(img)
                elif a == 'upsample':
                    img = esrgan_processing.upsample(img)
                    img = img.resize((int(img.width/2), int(img.height/2)), resample=Image.BICUBIC)  # go from 4x to 2x
                elif a == 'none' or a == '':
                    pass
            imgs1.append(img)

        # save the images
        for i, (img0, img1) in enumerate(zip(imgs0, imgs1)):
            out_name = 'f%05d%s_%s.%s' % (idx_frame, '_%02d'%i if num_per>1 else '', frame_name, save_ext)
            is_train = training[num_per * k + i]

            if save_mode == 'combined':
                output_dir = trainA_dir if is_train else testA_dir
                img2 = Image.new('RGB', (out_w * 2, out_h))
                img2.paste(img1.convert('RGB'), (0, 0))
                img2.paste(img0.convert('RGB'), (out_w, 0))
                img2.save(os.path.join(output_dir, out_name), quality=97)

            else:

                if output_dir == 'None':
                    img1.convert('RGB').save(full_image_path, quality=97)
                else:
                    outputA_dir = trainA_dir if is_train else testA_dir
                    img1.convert('RGB').save(os.path.join(outputA_dir, out_name), quality=97)
                    if save_mode == 'split':
                        outputB_dir = trainB_dir if is_train else testB_dir
                        img0.convert('RGB').save(os.path.join(outputB_dir, out_name), quality=97)