Esempio n. 1
0
def do_exp(wf_name, **params):

    _wf = wf(wf_name)

    ga_makespan, heft_make, ga_schedule, heft_sched = MixRunner()(_wf, **params)

    rm = ExperimentResourceManager(rg.r(params["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(comp_time_cost=0, transf_time_cost=0, transferMx=None,
                                    ideal_flops=params["ideal_flops"],
                                    transfer_time=params["transfer_time"])

    heft_schedule = run_heft(_wf, rm, estimator)
    heft_makespan = Utility.makespan(heft_schedule)


    data = {
        "wf_name": wf_name,
        "params": params,
        "heft": {
            "makespan": heft_makespan,
            "overall_transfer_time": Utility.overall_transfer_time(heft_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(heft_schedule)
        },
        "ga": {
            "makespan": ga_makespan,
            "overall_transfer_time": Utility.overall_transfer_time(ga_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(ga_schedule)
        },
        #"heft_schedule": heft_schedule,
        #"ga_schedule": ga_schedule
    }

    return data
Esempio n. 2
0
def do_exp(alg_builder, wf_name, **params):
    _wf = wf(wf_name)
    rm = ExperimentResourceManager(rg.r(params["resource_set"]["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(**params["estimator_settings"])
    dynamic_heft = DynamicHeft(_wf, rm, estimator)
    ga = alg_builder(_wf, rm, estimator,
                     params["init_sched_percent"],
                     logbook=None, stats=None,
                     **params["alg_params"])
    machine = GaHeftExecutor(heft_planner=dynamic_heft,
                             wf=_wf,
                             resource_manager=rm,
                             ga_builder=lambda: ga,
                             **params["executor_params"])

    machine.init()
    machine.run()
    resulted_schedule = machine.current_schedule

    Utility.validate_dynamic_schedule(_wf, resulted_schedule)

    data = {
        "wf_name": wf_name,
        "params": params,
        "result": {
            "makespan": Utility.makespan(resulted_schedule),
            ## TODO: this function should be remade to adapt under conditions of dynamic env
            #"overall_transfer_time": Utility.overall_transfer_time(resulted_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(resulted_schedule),
            "overall_failed_tasks_count": Utility.overall_failed_tasks_count(resulted_schedule)
        }
    }

    return data
Esempio n. 3
0
def heft_exp(saver, wf_name, **params):
    _wf = wf(wf_name)
    rm = ExperimentResourceManager(rg.r(params["resource_set"]["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(**params["estimator_settings"])

    dynamic_heft = DynamicHeft(_wf, rm, estimator)
    heft_machine = HeftExecutor(rm, heft_planner=dynamic_heft,
                                **params["executor_params"])
    heft_machine.init()
    heft_machine.run()
    resulted_schedule = heft_machine.current_schedule

    Utility.validate_dynamic_schedule(_wf, resulted_schedule)

    data = {
        "wf_name": wf_name,
        "params": params,
        "result": {
            "makespan": Utility.makespan(resulted_schedule),
            ## TODO: this function should be remade to adapt under conditions of dynamic env
            #"overall_transfer_time": Utility.overall_transfer_time(resulted_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(resulted_schedule),
            "overall_failed_tasks_count": Utility.overall_failed_tasks_count(resulted_schedule)
        }
    }

    if saver is not None:
        saver(data)

    return data
Esempio n. 4
0
def heft_exp(saver, wf_name, **params):
    _wf = wf(wf_name)
    rm = ExperimentResourceManager(rg.r(params["resource_set"]["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(**params["estimator_settings"])

    dynamic_heft = DynamicHeft(_wf, rm, estimator)
    heft_machine = HeftExecutor(rm,
                                heft_planner=dynamic_heft,
                                **params["executor_params"])
    heft_machine.init()
    heft_machine.run()
    resulted_schedule = heft_machine.current_schedule

    Utility.validate_dynamic_schedule(_wf, resulted_schedule)

    data = {
        "wf_name": wf_name,
        "params": params,
        "result": {
            "makespan":
            Utility.makespan(resulted_schedule),
            ## TODO: this function should be remade to adapt under conditions of dynamic env
            #"overall_transfer_time": Utility.overall_transfer_time(resulted_schedule, _wf, estimator),
            "overall_execution_time":
            Utility.overall_execution_time(resulted_schedule),
            "overall_failed_tasks_count":
            Utility.overall_failed_tasks_count(resulted_schedule)
        }
    }

    if saver is not None:
        saver(data)

    return data
Esempio n. 5
0
def do_exp(wf_name, **params):

    _wf = wf(wf_name)

    ga_makespan, heft_make, ga_schedule, heft_sched = MixRunner()(_wf,
                                                                  **params)

    rm = ExperimentResourceManager(rg.r(params["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(comp_time_cost=0,
                                        transf_time_cost=0,
                                        transferMx=None,
                                        ideal_flops=params["ideal_flops"],
                                        transfer_time=params["transfer_time"])

    heft_schedule = run_heft(_wf, rm, estimator)
    heft_makespan = Utility.makespan(heft_schedule)

    data = {
        "wf_name": wf_name,
        "params": params,
        "heft": {
            "makespan":
            heft_makespan,
            "overall_transfer_time":
            Utility.overall_transfer_time(heft_schedule, _wf, estimator),
            "overall_execution_time":
            Utility.overall_execution_time(heft_schedule)
        },
        "ga": {
            "makespan":
            ga_makespan,
            "overall_transfer_time":
            Utility.overall_transfer_time(ga_schedule, _wf, estimator),
            "overall_execution_time":
            Utility.overall_execution_time(ga_schedule)
        },
        #"heft_schedule": heft_schedule,
        #"ga_schedule": ga_schedule
    }

    return data
Esempio n. 6
0
def do_triple_island_exp(saver, alg_builder, chromosome_cleaner_builder,
                         schedule_to_chromosome_converter_builder, wf_name,
                         **params):
    _wf = wf(wf_name)
    rm = ExperimentResourceManager(rg.r(params["resource_set"]["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(**params["estimator_settings"])
    chromosome_cleaner = chromosome_cleaner_builder(_wf, rm, estimator)
    dynamic_heft = DynamicHeft(_wf, rm, estimator)

    mpga = alg_builder(_wf,
                       rm,
                       estimator,
                       params["init_sched_percent"],
                       log_book=None,
                       stats=None,
                       alg_params=params["alg_params"])

    machine = MIGaHeftExecutor(heft_planner=dynamic_heft,
                               wf=_wf,
                               resource_manager=rm,
                               estimator=estimator,
                               ga_builder=lambda: mpga,
                               chromosome_cleaner=chromosome_cleaner,
                               schedule_to_chromosome_converter=
                               schedule_to_chromosome_converter_builder(
                                   wf, rm, estimator),
                               **params["executor_params"])

    machine.init()
    machine.run()
    resulted_schedule = machine.current_schedule

    Utility.validate_dynamic_schedule(_wf, resulted_schedule)

    data = {
        "wf_name": wf_name,
        "params": params,
        "result": {
            "makespan":
            Utility.makespan(resulted_schedule),
            ## TODO: this function should be remade to adapt under conditions of dynamic env
            #"overall_transfer_time": Utility.overall_transfer_time(resulted_schedule, _wf, estimator),
            "overall_execution_time":
            Utility.overall_execution_time(resulted_schedule),
            "overall_failed_tasks_count":
            Utility.overall_failed_tasks_count(resulted_schedule)
        }
    }

    if saver is not None:
        saver(data)

    return data
Esempio n. 7
0
def do_exp(wf_name, **params):

    _wf = wf(wf_name)

    ga_makespan, heft_make, ga_schedule, heft_sched, logbook = MixRunner()(_wf, **params)

    rm = ExperimentResourceManager(rg.r(params["nodes_conf"]))
    estimator = TestEstimator(comp_time_cost=0, transf_time_cost=0, bandwidth=float(params["data_intensive_coeff"]), transferMx=None,
                                    ideal_flops=params["ideal_flops"], max_size=float(params["max_size"]),
                                    transfer_time=params["transfer_time"])

    heft_schedule = run_heft(_wf, rm, estimator)
    heft_makespan = Utility.makespan(heft_schedule)
    # print("Heft schedule:")
    # print(heft_schedule)
    # print("Heft makespan: {0}".format(heft_makespan))
    # print("GA schedule:")
    # print(ga_schedule)
    # print("GA makespan: {0}".format(ga_makespan))

    data = {
        "wf_name": wf_name,
        "params": params,
        "heft": {
            "makespan": heft_makespan,
            "overall_transfer_time": Utility.overall_transfer_time(heft_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(heft_schedule)
        },
        "ga": {
            "makespan": ga_makespan,
            "overall_transfer_time": Utility.overall_transfer_time(ga_schedule, _wf, estimator),
            "overall_execution_time": Utility.overall_execution_time(ga_schedule)
        },
        "logbook": logbook
        #"heft_schedule": heft_schedule,
        #"ga_schedule": ga_schedule
    }

    return data
Esempio n. 8
0
    res = do_exp_schedule(False)
    return (res[0], res[4])


if __name__ == '__main__':
    print("Population size: " + str(PARAMS["ga_params"]["population"]))

    _wf = wf(wf_names[0])
    rm = ExperimentResourceManager(rg.r(PARAMS["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(comp_time_cost=0, transf_time_cost=0, transferMx=None,
                                            ideal_flops=PARAMS["ideal_flops"], transfer_time=PARAMS["transfer_time"])

    heft_schedule = run_heft(_wf, rm, estimator)
    heft_makespan = Utility.makespan(heft_schedule)
    overall_transfer = Utility.overall_transfer_time(heft_schedule, _wf, estimator)
    overall_execution = Utility.overall_execution_time(heft_schedule)

    print("Heft makespan: {0}, Overall transfer time: {1}, Overall execution time: {2}".format(heft_makespan,
                                                                                               overall_transfer,
                                                                                               overall_execution))

    if not only_heft:
        result = repeat(do_exp_heft_schedule, 1)
        mean = numpy.mean(result)
        if mean > heft_makespan:
            profit = mean / heft_makespan * 100
        else:
            profit = -heft_makespan / mean * 100
        print(result)
        print("Heft makespan: {0}, Overall transfer time: {1}, Overall execution time: {2}".format(heft_makespan,
                                                                                               overall_transfer,
Esempio n. 9
0
def do_inherited_pop_exp(saver, alg_builder, chromosome_cleaner_builder,
                         wf_name, **params):
    _wf = wf(wf_name)
    rm = ExperimentResourceManager(rg.r(params["resource_set"]["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(**params["estimator_settings"])
    chromosome_cleaner = chromosome_cleaner_builder(_wf, rm, estimator)
    dynamic_heft = DynamicHeft(_wf, rm, estimator)

    logbook = Logbook()

    stats = tools.Statistics(lambda ind: ind.fitness.values[0])
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)

    ga = alg_builder(_wf,
                     rm,
                     estimator,
                     params["init_sched_percent"],
                     log_book=logbook,
                     stats=stats,
                     alg_params=params["alg_params"])

    machine = GaHeftOldPopExecutor(heft_planner=dynamic_heft,
                                   wf=_wf,
                                   resource_manager=rm,
                                   estimator=estimator,
                                   stat_saver=None,
                                   ga_builder=lambda: ga,
                                   chromosome_cleaner=chromosome_cleaner,
                                   **params["executor_params"])

    machine.init()
    print("Executor start")
    machine.run()
    print("Executor stop")

    resulted_schedule = machine.current_schedule
    stat_data = machine.executor_stat_data

    Utility.validate_dynamic_schedule(_wf, resulted_schedule)

    data = {
        "wf_name": wf_name,
        "params": params,
        "result": {
            "random_init_logbook":
            stat_data["random_init_logbook"],
            "inherited_init_logbook":
            stat_data["inherited_init_logbook"],
            "makespan":
            Utility.makespan(resulted_schedule),
            ## TODO: this function should be remade to adapt under conditions of dynamic env
            #"overall_transfer_time": Utility.overall_transfer_time(resulted_schedule, _wf, estimator),
            "overall_execution_time":
            Utility.overall_execution_time(resulted_schedule),
            "overall_failed_tasks_count":
            Utility.overall_failed_tasks_count(resulted_schedule)
        }
    }

    if saver is not None:
        saver(data)

    return data
Esempio n. 10
0
def do_island_inherited_pop_exp(alg_builder, mp_alg_builder, algorithm_builder,
                                chromosome_cleaner_builder,
                                schedule_to_chromosome_converter_builder,
                                wf_name, **params):
    _wf = wf(wf_name)
    rm = ExperimentResourceManager(rg.r(params["resource_set"]["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(**params["estimator_settings"])
    chromosome_cleaner = chromosome_cleaner_builder(_wf, rm, estimator)
    dynamic_heft = DynamicHeft(_wf, rm, estimator)
    ga = alg_builder(_wf,
                     rm,
                     estimator,
                     params["init_sched_percent"],
                     log_book=None,
                     stats=None,
                     alg_params=params["alg_params"])

    ## TODO: remake this part later.
    # def reverse_interface_adapter(func):
    #     def wrap(*args, **kwargs):
    #         (best, pop, resulted_schedule, _), logbook = func(*args, **kwargs)
    #         return pop, logbook, best
    #     return wrap

    mpga = mp_alg_builder(
        _wf,
        rm,
        estimator,
        params["init_sched_percent"],
        algorithm=partial(algorithm_builder, **params["alg_params"]),
        #algorithm=reverse_interface_adapter(ga),
        log_book=None,
        stats=None,
        alg_params=params["alg_params"])

    kwargs = dict(params["executor_params"])
    kwargs.update(params["alg_params"])
    kwargs["ga_params"] = {"population": params["alg_params"]["n"]}

    machine = MPGaHeftOldPopExecutor(heft_planner=dynamic_heft,
                                     wf=_wf,
                                     resource_manager=rm,
                                     estimator=estimator,
                                     stat_saver=None,
                                     ga_builder=lambda: ga,
                                     mpga_builder=lambda: mpga,
                                     chromosome_cleaner=chromosome_cleaner,
                                     mpnewVSmpoldmode=False,
                                     mixed_init_pop=False,
                                     emigrant_selection=None,
                                     check_evolution_for_stopping=False,
                                     schedule_to_chromosome_converter=
                                     schedule_to_chromosome_converter_builder(
                                         wf, rm, estimator),
                                     **kwargs)

    machine.init()
    machine.run()
    resulted_schedule = machine.current_schedule
    stat_data = machine.executor_stat_data

    Utility.validate_dynamic_schedule(_wf, resulted_schedule)

    data = {
        "wf_name": wf_name,
        "params": params,
        "result": {
            "makespan":
            Utility.makespan(resulted_schedule),
            ## TODO: this function should be remade to adapt under conditions of dynamic env
            #"overall_transfer_time": Utility.overall_transfer_time(resulted_schedule, _wf, estimator),
            "overall_execution_time":
            Utility.overall_execution_time(resulted_schedule),
            "overall_failed_tasks_count":
            Utility.overall_failed_tasks_count(resulted_schedule)
        }
    }

    return data
Esempio n. 11
0
if __name__ == '__main__':
    print("Population size: " + str(PARAMS["ga_params"]["population"]))

    _wf = wf(wf_names[0])
    rm = ExperimentResourceManager(rg.r(PARAMS["nodes_conf"]))
    estimator = SimpleTimeCostEstimator(comp_time_cost=0,
                                        transf_time_cost=0,
                                        transferMx=None,
                                        ideal_flops=PARAMS["ideal_flops"],
                                        transfer_time=PARAMS["transfer_time"])

    heft_schedule = run_heft(_wf, rm, estimator)
    heft_makespan = Utility.makespan(heft_schedule)
    overall_transfer = Utility.overall_transfer_time(heft_schedule, _wf,
                                                     estimator)
    overall_execution = Utility.overall_execution_time(heft_schedule)

    print(
        "Heft makespan: {0}, Overall transfer time: {1}, Overall execution time: {2}"
        .format(heft_makespan, overall_transfer, overall_execution))

    if not only_heft:
        result = repeat(do_exp_heft_schedule, 10)
        mean = numpy.mean(result)
        #profit = (1 - mean / heft_makespan) * 100
        print(result)
        print(
            "Heft makespan: {0}, Overall transfer time: {1}, Overall execution time: {2}"
            .format(heft_makespan, overall_transfer, overall_execution))
        print("Mean: {0}".format(mean))
        #print("Profit: {0}".format(profit))