def export_latest_data(d_ref_states, d_states_data: dict):
    d_states_latest = helper.extract_latest_data(d_ref_states, d_states_data)

    # # d_states_latest = dict(d_ref_states)
    # for code in d_states_latest.keys():
    #     assert code in d_states_data.keys()
    #     l_state = d_states_data[code]
    #     d_latest = l_state[-1]
    #     d_states_latest[code]['Date_Latest'] = d_latest['Date']
    #     for key in ('Cases', 'Deaths', 'Cases_New', 'Deaths_New', 'Cases_Per_Million', 'Deaths_Per_Million'):
    #         d_states_latest[code][key] = d_latest[key]
    with open('data/de-states/de-states-latest.tsv', mode='w', encoding='utf-8', newline='\n') as fh:
        csvwriter = csv.DictWriter(fh, delimiter='\t', extrasaction='ignore',
                                   fieldnames=('State', 'Code', 'Population', 'Pop Density',
                                               'Date_Latest',
                                               'Cases', 'Deaths',
                                               'Cases_New', 'Deaths_New',
                                               'Cases_Per_Million',
                                               'Deaths_Per_Million')
                                   )
        csvwriter.writeheader()
        for code in sorted(d_states_latest.keys()):
            d = d_states_latest[code]
            d['Code'] = code
            if code == 'DE-total':  # DE as last row
                d_de = dict(d)
                continue
            csvwriter.writerow(
                d
            )
        del d, code
        # add # to uncomment the DE total sum last line
        d_de['State'] = '# Deutschland'
        csvwriter.writerow(d_de)
        del d_de
Esempio n. 2
0
def export_latest_data(d_districts_data: dict):
    d_districts_latest = helper.extract_latest_data(d_ref_landkreise,
                                                    d_districts_data)
    d_for_export_V1 = d_districts_latest
    l_for_export_V2 = []
    for lk_id, d in d_districts_latest.items():
        # V1: dict (lk_id) -> dict
        # V2: list of ficts
        # d_for_export_V1[lk_id] = d
        d["Landkreis"] = get_lk_name_from_lk_id(lk_id)
        d["Bundesland"] = d["BL_Name"]
        del d["BL_Name"]
        # divi data is not returned by helper.extract_latest_data and mostly not available at latest day, so using the date of the previous day instead
        if 'DIVI_Intensivstationen_Covid_Prozent' in d_districts_data[lk_id][
                -1]:
            d['DIVI_Intensivstationen_Covid_Prozent'] = d_districts_data[
                lk_id][-1]['DIVI_Intensivstationen_Covid_Prozent']
            d['DIVI_Intensivstationen_Betten_belegt_Prozent'] = d_districts_data[
                lk_id][-1]['DIVI_Intensivstationen_Betten_belegt_Prozent']
        elif 'DIVI_Intensivstationen_Covid_Prozent' in d_districts_data[lk_id][
                -2]:
            d['DIVI_Intensivstationen_Covid_Prozent'] = d_districts_data[
                lk_id][-2]['DIVI_Intensivstationen_Covid_Prozent']
            d['DIVI_Intensivstationen_Betten_belegt_Prozent'] = d_districts_data[
                lk_id][-2]['DIVI_Intensivstationen_Betten_belegt_Prozent']
        d_for_export_V2 = d
        d_for_export_V2['LK_ID'] = lk_id
        l_for_export_V2.append(d_for_export_V2)

    # Export as JSON
    helper.write_json('data/de-districts/de-districts-results.json',
                      d_for_export_V1,
                      sort_keys=True)

    helper.write_json(
        filename='data/de-districts/de-districts-results-V2.json',
        d=l_for_export_V2,
        sort_keys=True)

    # Export as CSV
    with open('data/de-districts/de-districts-results.tsv',
              mode='w',
              encoding='utf-8',
              newline='\n') as fh_csv:
        csvwriter = csv.DictWriter(
            fh_csv,
            delimiter='\t',
            extrasaction='ignore',
            fieldnames=[
                'Landkreis', 'Bundesland', 'Population', 'Cases', 'Deaths',
                'Cases_Per_Million', 'Deaths_Per_Million',
                'DIVI_Intensivstationen_Covid_Prozent',
                'DIVI_Intensivstationen_Betten_belegt_Prozent'
            ])

        csvwriter.writeheader()

        for lk_id, d in d_for_export_V1.items():
            csvwriter.writerow(d)
def extract_latest_date_data():
    """
    for all countries in json: extract latest entry
    write to data/int/countries-latest-all.tsv and data/int/countries-latest-all.json
    """

    d_countries_latest = helper.extract_latest_data(d_countries_ref,
                                                    d_countries_timeseries)

    l_for_export = []
    with open('data/int/countries-latest-all.tsv',
              mode='w',
              encoding='utf-8',
              newline='\n') as fh:
        csvwriter = csv.DictWriter(
            fh,
            delimiter='\t',
            extrasaction='ignore',
            fieldnames=[
                'Country', 'Population', 'Date', 'Cases', 'Deaths',
                'Cases_Per_Million', 'Deaths_Per_Million',
                'Cases_Last_Week_Per_Million', 'Deaths_Last_Week_Per_Million',
                'Continent', 'Code', 'DoublingTime_Cases_Last_Week_Per_100000'
            ])
        # 'Cases_Last_Week',
        csvwriter.writeheader()

        for country in sorted(d_countries_latest.keys(), key=str.casefold):
            # l_time_series = d_countries_timeseries[country]
            # d = l_time_series[-1]  # last entry (=>latest date)
            # pop = read_population(country)

            d2 = d_countries_latest[country]
            d2['Country'] = country
            # d2['Code'] = read_country_code(d2['Country'])
            # d2['Continent'] = read_continent(d2['Country'])
            # d2['Population'] = pop
            # if d2['Cases_Per_Million']:
            #     d2['Cases_Per_Million'] = round(
            #         d['Cases_Per_Million'], 0)
            # if d2['Deaths_Per_Million']:
            #     d2['Deaths_Per_Million'] = round(
            #         d['Deaths_Per_Million'], 0)
            # if d2['Cases_Last_Week_Per_Million']:
            #     d2['Cases_Last_Week_Per_Million'] = round(
            #         d['Cases_Last_Week_Per_Million'], 0)
            # if d2['Deaths_Last_Week_Per_Million']:
            #     d2['Deaths_Last_Week_Per_Million'] = round(
            #         d['Deaths_Last_Week_Per_Million'], 0)
            csvwriter.writerow(d2)
            l_for_export.append(d2)

    # JSON export
    helper.write_json(filename='data/int/countries-latest-all.json',
                      d=l_for_export)

    # for selected countries write to separate file, for Gnuplot plotting
    with open('data/int/countries-latest-selected.tsv',
              mode='w',
              encoding='utf-8',
              newline='\n') as fh:
        csvwriter = csv.DictWriter(fh,
                                   delimiter='\t',
                                   extrasaction='ignore',
                                   fieldnames=[
                                       'Country', 'Date', 'Population',
                                       'Cases', 'Deaths', 'Cases_Per_Million',
                                       'Deaths_Per_Million'
                                   ])
        csvwriter.writeheader()
        for country in sorted(d_selected_countries.keys(), key=str.casefold):
            l_time_series = d_countries_timeseries[country]
            d = l_time_series[-1]  # last entry for this country
            d2 = d
            d2["Country"] = country
            d2['Population'] = d_selected_countries[country]['Population']
            csvwriter.writerow(d2)