class RobotLocalizer(object):
    """
    doc
    """
    def __init__(self):
        print("init RobotLocalizer")
        rospy.init_node('localizer')
        self.tfHelper = TFHelper()

        self.xs = None
        self.ys = None
        self.ranges = []  # Lidar scan

        self.last_odom_msg = None
        print(self.last_odom_msg)
        self.diff_transform = {
            'translation': None,
            'rotation': None,
        }

        self.odom_changed = False  # Toggles to True when the odom frame has changed enough

        # subscribers and publisher
        self.laser_sub = rospy.Subscriber('/scan', LaserScan,
                                          self.process_scan)
        self.odom_sub = rospy.Subscriber("/odom", Odometry, self.update_odom)

        ### Used for the particle filter
        # publisher for the particle cloud for visualizing in rviz.
        self.particle_pub = rospy.Publisher("particlecloud",
                                            PoseArray,
                                            queue_size=10)
        # publisher for the top weighted particle
        self.topparticle_pub = rospy.Publisher("topparticle",
                                               PoseArray,
                                               queue_size=10)

        # publisher for rviz markers
        self.pub_markers = rospy.Publisher('/visualization_markerarray',
                                           MarkerArray,
                                           queue_size=10)

        self.particle_filter = ParticleFilter(self.topparticle_pub,
                                              self.particle_pub,
                                              self.pub_markers)
        print("ParticleFilter initialized")

        print("RobotLocalizer initialized")

    def update_odom(self, msg):
        MIN_TRAVEL_DISANCE = 0.1
        MIN_TRAVEL_ANGLE = math.radians(5)

        if self.last_odom_msg is None:
            self.last_odom_msg = msg
            return

        last_xyt = self.tfHelper.convert_pose_to_xy_and_theta(
            self.last_odom_msg.pose.pose)
        current_xyt = self.tfHelper.convert_pose_to_xy_and_theta(msg.pose.pose)

        # Get translation in odom
        translation = [
            current_xyt[0] - last_xyt[0],  # x
            current_xyt[1] - last_xyt[1],  # y
        ]

        # rotate to vehicle frame
        translation = self.tfHelper.rotate_2d_vector(
            translation,
            -1 * last_xyt[2])  # negative angle to counter rotation

        # get orientation diff
        theta = self.tfHelper.angle_diff(current_xyt[2], last_xyt[2])

        # Schedule to update particle filter if there's enough change
        distance_travelled = math.sqrt(translation[0]**2 + translation[1]**2)
        if distance_travelled > MIN_TRAVEL_DISANCE or theta > MIN_TRAVEL_ANGLE:
            # TODO(matt): consider using actual transform
            # last_to_current_transform = self.tfHelper.convert_translation_rotation_to_pose(
            #     translation, self.tfHelper.convert_theta_to_quaternion(theta)
            # )

            print("travelled: {}".format(distance_travelled))

            last_to_current_transform = {
                'translation': translation,
                'rotation': theta,
            }
            print("transform\n    x: {}\n    y: {}".format(
                last_to_current_transform['translation'][0],
                last_to_current_transform['translation'][1]))

            self.diff_transform = last_to_current_transform
            self.last_odom_msg = msg
            self.odom_changed = True

    def process_scan(self, m):
        """Storing lidar data
        """
        #TODO:
        self.ranges = m.ranges
        xs = []
        ys = []
        for i in range(len(self.ranges)):
            if self.ranges[i] != 0:
                theta = math.radians(i)
                r = self.ranges[i]
                xf = math.cos(theta) * r
                yf = math.sin(theta) * r
                xs.append(xf)
                ys.append(yf)

        self.xs = xs
        self.ys = ys

    def get_x_directions(self, x):
        interval = 360 / x
        angle = 0
        directions = []
        for i in range(x):
            dist = self.ranges[angle]
            directions.append((math.radians(angle), dist))
            angle = angle + interval
        return directions

    def gen_neighbor_particles(self):
        """Generates particles around given points"""
        #TODO:
        pass

    def find_all_nearest_objects(self):
        """Determines nearest non-zero point of all point (loops through)"""
        #TODO:
        pass

    def get_encoder_value(self):
        """Records odom movement, translate to x, y, and theta"""
        #TODO:
        pass

    """
    Functions to write or figure out where they are:
    Order of particle filter:

    1. DONE generate initial 500 random particles
    2. DONE get ranges from robot
        -determine 8 values for directions
        -find lowest distance to obstacle
    3. Process particles
     - project lowest distance from robot onto each particle
        -DONE for each particle get nearest object -> error distance
        -DONE 1/error distance = particle.weight
    4. DONE publish particle with highest weight
    5. DONE resample particles based on weight
    6. DONE move robot - get transform
    7. DONE transform resampled points with randomness

    """

    def run(self):
        # save odom position (Odom or TF Module)
        # self.generate_random_points()
        NUM_DIRECTIONS = 8
        self.particle_filter.gen_init_particles()
        # # Get lidar readings in x directions
        # robo_pts = self.get_x_directions(NUM_DIRECTIONS)
        # # For each particle compare lidar scan with map
        # self.particle_filter.compare_points(robo_pts)
        #
        # # Publish best guessself.particle_filter.gen_init_particles()
        # self.particle_filter.publish_top_particle(self.topparticle_pub)
        #
        # # Resample particles
        # self.particle_filter.resample_particles()
        #
        # # Publish cloud
        # self.particle_filter.publish_particle_cloud(self.particle_pub)
        r = rospy.Rate(5)

        while not (rospy.is_shutdown()):
            self.particle_filter.gauge_particle_position()
            if (self.odom_changed):
                print("Odom changed, let's do some stuff")
                # Get lidar readings in x directions
                robo_pts = self.get_x_directions(NUM_DIRECTIONS)

                # Update particle poses
                self.particle_filter.update_all_particles(self.diff_transform)

                # Display new markers
                self.particle_filter.draw_markerArray()

                # For each particle compare lidar scan with map
                self.particle_filter.compare_points(robo_pts)

                # Publish best guess self.particle_filter.gen_init_particles()
                top_particle_pose = self.particle_filter.publish_top_particle()
                self.tfHelper.fix_map_to_odom_transform(
                    top_particle_pose, rospy.Time(0))  # TODO: Move?

                # Resample particles
                self.particle_filter.resample_particles()

                # Publish cloud
                self.particle_filter.publish_particle_cloud()

                # Wait until robot moves enough again
                self.odom_changed = False

            self.tfHelper.send_last_map_to_odom_transform()
            r.sleep()
Esempio n. 2
0
class ParticleFilter(object):
    """ The class that represents a Particle Filter ROS Node
    """
    def __init__(self, top_particle_pub, particle_cloud_pub, particle_cloud_marker_pub):
        # # pose_listener responds to selection of a new approximate robot
        # # location (for instance using rviz)
        # rospy.Subscriber("initialpose",
        #                  PoseWithCovarianceStamped,
        #                  self.update_initial_pose)

        self.top_particle_pub = top_particle_pub
        self.particle_cloud_pub = particle_cloud_pub
        self.particle_cloud_marker_pub = particle_cloud_marker_pub

        # create instances of two helper objects that are provided to you
        # as part of the project
        self.occupancy_field = OccupancyField()
        self.transform_helper = TFHelper()
        self.particles = []
        self.markerArray = MarkerArray()

    def gauge_particle_position(self):
        xs = [particle.x for particle in self.particles]
        ys = [particle.y for particle in self.particles]

        print("min x: {} --- average x: {} --- max x: {} \nmin y: {} --- average y: {} --- max y: {}".format(
            min(xs), sum(xs)/len(xs), max(xs), min(ys), sum(ys)/len(ys), max(ys) 
        ))

    def get_marker(self, x, y):
        marker = Marker()
        marker.header.frame_id = "base_link"
        marker.type = marker.SPHERE
        marker.pose.position.x = x
        marker.pose.position.y = y
        marker.pose.position.z = 0
        marker.scale.x = 0.3
        marker.scale.y = 0.3
        marker.scale.z = 0.3
        marker.color.a = 1.0
        marker.color.r = 0.0
        marker.color.g = 1.0
        marker.color.b = 0.0
        return marker

    def draw_markerArray(self):
        markerArray = MarkerArray()
        for p in self.particles:
            m = self.get_marker(p.x, p.y)
            markerArray.markers.append(m)
        self.particle_cloud_marker_pub.publish(markerArray)

    def publish_particle_cloud(self):
        msg = PoseArray()
        msg.header.frame_id = "map"

        # Make pose from particle for all particles
        msg.poses = [particle.get_pose() for particle in self.particles]

        # Publish
        self.particle_cloud_pub.publish(msg)

    def publish_top_particle(self):
        msg = PoseArray()

        top_particle = self.particles[0]

        for particle in self.particles:
            if particle.weight > top_particle.weight:
                top_particle = particle

        msg.poses.append(top_particle.get_pose())
        # print(msg)
        self.top_particle_pub.publish(msg)

        return top_particle.get_pose()

    def gen_init_particles(self):
        """Generating random particles with x, y, and t values"""
        # width = self.occupancy_field.map.info.width
        # height = self.occupancy_field.map.info.height
        width = 10
        height = 10
        print("map width: {}, height: {}".format(width, height))
        for i in range(500):
            # x = r.randrange(0,width)
            # y = r.randrange(0,height)
            x = r.uniform(-5, 5)
            y = r.uniform(-5, 5)
            t = math.radians(r.randrange(0,360))
            p = Particle(x,y,t)
            self.particles.append(p)

    def update_initial_pose(self, msg):
        """ Callback function to handle re-initializing the particle filter
            based on a pose estimate.  These pose estimates could be generated
            by another ROS Node or could come from the rviz GUI """
        xy_theta = \
            self.transform_helper.convert_pose_to_xy_and_theta(msg.pose.pose)

        # TODO this should be deleted before posting
        self.transform_helper.fix_map_to_odom_transform(msg.pose.pose,
                                                        msg.header.stamp)
        # initialize your particle filter based on the xy_theta tuple

    def resample_particles(self):
        """Resample particles with replacement."""
        if len(self.particles):
            weights = [particle.weight  if not math.isnan(particle.weight) else 0.0001 for particle in self.particles]
            total_weight = sum(weights)
            weights = [weight / total_weight for weight in weights]

            before = time.time()
            self.particles = [particle.deep_copy() for particle in list(np.random.choice(
            # self.particles = [particle for particle in list(np.random.choice(
                self.particles,
                size=len(self.particles),
                replace=True,
                p=weights,
            ))]
            after = time.time()
            print("************************************timer: {}".format(after-before))
            print("number of particles: {}".format(len(self.particles)))
        else:
            print("No particles to resample from")
            return None

    def update_all_particles(self, transform):
        for particle in self.particles:
            # self.update_particle(particle, transform)
            self.update_particle_with_randomness(particle, transform)

    def update_particle_with_randomness(self, particle, transform):
        # TODO(matt): Make this a tunable param
        DISTANCE_VAR_SCALE = 0.001
        ANGLE_VAR_SCALE = math.radians(0.5)

        # NOTE: We scale the variance instead of the standard deviation because
        # that makes it independent of the update time (the noise in one update
        # will be the same as the sum of the noise in two updates)
        distance = math.sqrt(transform['translation'][0]**2 + transform['translation'][1]**2)
        translation_mean, translation_var = 0, DISTANCE_VAR_SCALE #* distance  # scale with magnitude
        rotation_mean, rotation_var = 0, ANGLE_VAR_SCALE

        modified_transform = transform
        # modified_transform['translation'][0] += float(np.random.normal(translation_mean, math.sqrt(translation_var), 1))
        # modified_transform['translation'][1] += float(np.random.normal(translation_mean, math.sqrt(translation_var), 1))
        # modified_transform['rotation'] += float(np.random.normal(rotation_mean, math.sqrt(rotation_var)))

        modified_transform['translation'][0] += float(np.random.uniform(-0.01, 0.01, 1))
        modified_transform['translation'][1] += float(np.random.uniform(-0.01, 0.01, 1))
        modified_transform['rotation'] += float(np.random.uniform(-math.radians(5), -math.radians(5), 1))

        self.update_particle(particle, modified_transform)

    def update_particle(self, particle, transform):
        # rotate translation in the particle's direction
        particle_translation = self.transform_helper.rotate_2d_vector(transform['translation'], particle.theta)

        particle.translate(particle_translation)
        particle.rotate(transform['rotation'])


    # def compare_points(self):
    #     """Compares translated particle to lidar scans, returns weights values"""
    #     distances = []
    #     errordis = 0
    #     for a in range(500):
    #         particle.ParticleCloud(self.particle[a])
    #         for b in range(8):
    #             d[b] = OccupancyField.get_closest_obstacle_distance(particle.ParticleCloud[b][1],particle.ParticleCloud[b][2])
    #         particle.Particle.weight = 1 / (sum(d) + .01)

    def compare_points(self, robo_pts):
        """ This function determines the weights for each particle.

        Args:
            robo_pts (list): is a list of lidar readings for n directions. It can
                             be obtained by calling get_x_directions in robot localizerself.
        """
        for p in self.particles:
            p_cloud = ParticleCloud(p)
            p_cloud.generate_points(robo_pts)
            d = []
            for pt in p_cloud.pts:
                if pt[1] != 0:
                    d dist = abs(self.occupancy_field.get_closest_obstacle_distance(pt[0],pt[1]))
                    d.append(math.exp(-d**2/1))
            p.weight = 1 / (sum(d) + .01)

    def run(self):
        pass