Esempio n. 1
0
def _setup_opts(argv):
    """Parse inputs."""
    FLAGS = gflags.FLAGS

    opts = arg_parsing.setup_opts(argv, FLAGS)

    return opts
def _setup_opts(argv):
    """Setup default arguments for the arg parser.

    returns an opt dictionary with default values setup.
    """
    FLAGS = gflags.FLAGS

    opts = arg_parsing.setup_opts(argv, FLAGS)
    return opts
def _setup_opts(argv):
    """Parse inputs."""
    FLAGS = gflags.FLAGS

    opts = arg_parsing.setup_opts(argv, FLAGS)

    # setup the feature key list. The hdf5 sampler expects each feature key
    # to be a list of sub fields. Allowing the hdf5 sampler to traverse
    # tree like hdf5 files. This isn't needed in this version of the
    # processing, so just wrap each element as a 1 item list.
    opts["flags"].feat_keys = [[feat_key]
                               for feat_key in opts["flags"].feat_keys]

    return opts
def _setup_opts(argv):
    """Parse inputs."""
    FLAGS = gflags.FLAGS

    opts = arg_parsing.setup_opts(argv, FLAGS)

    # setup the number iterations per epoch.
    with h5py.File(opts["flags"].train_file, "r") as train_data:
        num_train_vids = len(train_data["exp_names"])
        iter_per_epoch = numpy.ceil(
            1.0 * num_train_vids / opts["flags"].mini_batch)

        iter_per_epoch = int(iter_per_epoch)
        opts["flags"].iter_per_epoch = iter_per_epoch
        opts["flags"].total_iterations =\
            iter_per_epoch * opts["flags"].total_epochs

    return opts
def _setup_opts(argv):
    """Parse inputs."""
    FLAGS = gflags.FLAGS

    opts = arg_parsing.setup_opts(argv, FLAGS)

    # setup the number iterations per epoch.
    with h5py.File(opts["flags"].train_file, "r") as train_data:
        num_train_vids = len(train_data["exp_names"])
        iter_per_epoch =\
            np.ceil(1.0 * num_train_vids / opts["flags"].hantman_mini_batch)

        iter_per_epoch = int(iter_per_epoch)
        opts["flags"].iter_per_epoch = iter_per_epoch
        opts["flags"].total_iterations =\
            iter_per_epoch * opts["flags"].total_epochs

    # convert the frames list into a list of values
    opts["flags"].frames = [int(frame) for frame in opts["flags"].frames]

    return opts
Esempio n. 6
0
def _setup_opts(argv):
    """Parse inputs."""
    FLAGS = gflags.FLAGS
    opts = arg_parsing.setup_opts(argv, FLAGS)
    # this is dumb... passing in negative numbers to DEFINE_multi_int doesn't
    # seem to work well. So frames will be a string and split off of spaces.
    opts["flags"].frames = [
        int(frame_num) for frame_num in opts["flags"].frames.split(' ')
    ]

    # setup the number iterations per epoch.
    with h5py.File(opts["flags"].train_file, "r") as train_data:
        num_train_vids = len(train_data["exp_names"])
        iter_per_epoch =\
            np.ceil(1.0 * num_train_vids / opts["flags"].hantman_mini_batch)

        iter_per_epoch = int(iter_per_epoch)
        opts["flags"].iter_per_epoch = iter_per_epoch
        opts["flags"].total_iterations =\
            iter_per_epoch * opts["flags"].total_epochs

    return opts
def _setup_opts(argv):
    """Setup the options."""
    FLAGS = gflags.FLAGS
    opts = arg_parsing.setup_opts(argv, FLAGS)

    return opts