Esempio n. 1
0
def delete_node():
    global G
    node_list = list(G.nodes())
    n_boxes = count_boxes()
    if n_boxes == 1:
        return
    id = random.choice(node_list)
    if is_blacklisted(id):
        return
    successors = G.successors(id)
    for successor in successors:
        try:
            if "_out" in successor:
                G.remove_node(f"{id}_out")
                G.remove_node(f"{id}_feedback")
                break
        except Exception as e:
            log(e)
    predecessors = G.predecessors(id)
    successors = G.successors(id)
    for predecessor in predecessors:
        for successor in successors:
            if predecessor == successor:
                continue
            G.add_edge(predecessor, successor)
    G.remove_node(id)
    return id
Esempio n. 2
0
def screenshot(G, folderpath, filename):
    """Make a png image of a graph."""
    imagepath = os.path.join(folderpath, "{filename}.png")
    log(f"SCREENSHOT {imagepath} with {G.order()} nodes, {G.size()} edges")
    A = nx.nx_agraph.to_agraph(G)
    A.graph_attr.update()
    A.draw(path=imagepath, prog="dot")
Esempio n. 3
0
def decimate(p=0.1):
    """ reduce the number of nodes and edges """
    global G
    n_boxes = count_boxes()
    if n_boxes < (1 / p) or G.size() < (1 / p):
        return
    n_boxes *= (1 - p)
    victims = []
    loops = 0
    while count_boxes() > n_boxes:
        log("DELETE A NODE")
        victim = delete_node()
        victims.append(victim)
        loops += 1
        if loops > 100:
            return
    n_edges = G.size() * (1 - p)
    loops = 0
    while G.size() > n_edges:
        log("DELETE AN EDGE")
        victim = delete_edge()
        victims.append(victim)
        loops += 1
        if loops > 100:
            return
    [log("KILLED", victim) for victim in victims]
Esempio n. 4
0
def build_brick(id, inputs=None):
    """Make the keras operation to be executed at a given node."""
    global G
    node = G.node[id]
    log('build brick for', node)
    node_type = node["node_type"]
    keys = node.keys()
    # TODO: SIMPLIFY THE F**K OUT OF THIS
    if "force_residual" in keys and "gives_feedback" not in keys:
        if node["force_residual"]:
            node["d_out"] = inputs.shape[-1]
    if node_type == "input":
        brick = L.Input(node['input_shape'])
    if node_type == "sepconv1d":
        brick = L.SeparableConv1D(node['filters'],
                                  node['kernel_size'],
                                  activation=node['activation'])
    if node_type in ["deep", "wide_deep"]:
        brick = get_kernel(node_type, node["layers"], node["stddev"],
                           inputs.shape[-1], node["d_out"], node["activation"],
                           0)
    if "k_conv" in node_type:
        brick = KConvSet(node["kernel"], node["layers"], node["stddev"],
                         inputs.shape[-1], node["d_out"], int(node_type[-1]))
    if node_type == "transformer":
        brick = Transformer(node["d_model"], node["n_heads"])
    G.node[id]['brick'] = brick
    return brick
Esempio n. 5
0
def delete_edge():
    global G
    edge = random.choice(list(G.edges()))
    log("delete_edge", edge)
    for node in edge:
        if is_blacklisted(node):
            log("not deleting", edge, "because", node, "is blacklisted")
            return
    G.remove_edge(*edge)
    return edge
Esempio n. 6
0
def recurse(hp):
    """with probability P, replace nodes with random feedforward regulons"""
    global G
    nodes = G.nodes(data=True)
    p_insert = hp.p_insert if count_boxes() > hp.initial_boxes else 1.
    for node in nodes:
        try:
            if node[1]["shape"] is "square":
                if random.random() < p_insert:
                    insert_motif(hp, id=node[0])
        except Exception as e:
            log('exception in recurse', e)
Esempio n. 7
0
def connect(p=0.2):
    global G
    if count_boxes() < 10:
        return
    n_edges = G.size() * (1 + p)
    loops = 0
    while G.size() < n_edges:
        log("CONNECT!")
        add_edge()
        loops += 1
        if loops > 100:
            return
Esempio n. 8
0
def clean_up():
    global G
    for id in list(G.nodes()):
        if G.node[id]["shape"] == "square":
            predecessors = G.predecessors(id)
            if len([*predecessors]) < 1:
                log("reconnecting", id, "to input")
                G.add_edge("input", id)
            successors = G.successors(id)
            if len([*successors]) < 1:
                log("reconnecting", id, "to output")
                G.add_edge(id, "output")
    inputs = list(G.successors("source"))
    for input in inputs:
        successors = list(G.successors(input))
        if len(successors) < 1:
            G.remove_node(input)
            G.remove_node(f"{input[:-9]}_out")
            continue
        for successor in successors:
            if G.node[successor]["shape"] == "triangle":
                log("CLEANUP BYPASS", input, successor)
                G.remove_edge(input, successor)
        predecessors = list(G.predecessors(input))
        for predecessor in predecessors:
            if G.node[predecessor]["shape"] == "triangle":
                log("CLEANUP BYPASS", predecessor, input)
                G.remove_edge(predecessor, input)
Esempio n. 9
0
def add_edge(node1=None, node2=None):
    global G
    prior_cycles = list(nx.simple_cycles(G))
    sample = safe_sample(G.nodes(), 2)
    log(f"SAMPLE, {sample}")
    for node in sample:
        if is_blacklisted(node):
            return
    node1, node2 = sample
    if node2 in G.successors(node1):
        return
    G.add_edge(node1, node2)
    new_cycles = list(nx.simple_cycles(G))
    if len(new_cycles) == len(
            prior_cycles) and node1 != node2 and node2 != node1:
        return G
    else:
        handle_feedback(node1, node2)
Esempio n. 10
0
def split_edge(id1=None,
               id2=None,
               style="filled",
               color="black",
               shape="square"):
    global G
    if id1 is None and id2 is None:
        id1 = random.choice(list(G.nodes()))
        successors = list(G.successors(id1))
        if len(successors) < 1:
            return
        id2 = random.choice(successors)
    log("split_edge", id1, id2)
    if is_blacklisted(id1) and is_blacklisted(id2) or id1 == id2:
        return
    new_node_id = f"{id1}--->{id2}"
    log(f"{id1}--->{new_node_id}--->{id2}")
    G.add_node(new_node_id, label="", style=style, color=color, shape=shape)
    G.add_edge(id1, new_node_id)
    G.add_edge(new_node_id, id2)
Esempio n. 11
0
def is_blacklisted(id):
    log(f"is {id} blacklisted?")
    try:
        node = G.node[id]
        if node["shape"] != "square":
            log("yup!")
            return True
        else:
            log("nope!")
            return False
    except Exception as e:
        log("nope!")
        return False
Esempio n. 12
0
def get_regulon(hp, parent=None, layers=None):
    """Build a subgraph to replace a node."""
    num_layers = safe_sample(hp.min_layers, hp.max_layers)
    M = nx.MultiDiGraph()
    ids = []
    for layer_number in range(num_layers):
        n_nodes = safe_sample(hp.min_nodes, hp.max_nodes)
        log(f"add layer {layer_number} with {n_nodes} nodes")
        ids_of_nodes_in_this_layer = []
        for node_number in range(n_nodes):
            if parent:
                node_id = f"{parent}.{layer_number}.{node_number}"
            else:
                node_id = f"{layer_number}.{node_number}"
            log(f"add node {node_id}")
            M.add_node(node_id,
                       label="",
                       style="filled",
                       shape="square",
                       color="black")
            ids_of_nodes_in_this_layer.append(node_id)
        ids.append(ids_of_nodes_in_this_layer)
    for predecessor_layer_number, predecessor_node_ids in enumerate(ids):
        for successor_layer_number, successor_node_ids in enumerate(ids):
            if predecessor_layer_number >= successor_layer_number:
                continue
            for predecessor_node_id in predecessor_node_ids:
                for successor_node_id in successor_node_ids:
                    log(f"{predecessor_node_id}--->{successor_node_id}")
                    M.add_edge(predecessor_node_id, successor_node_id)
    return M, ids
Esempio n. 13
0
def get_output(id):
    """
    Get the output of a node in a computation graph.
    Pull inputs from predecessors.
    """
    global G
    node = G.node[id]
    keys = node.keys()
    node_type = node["node_type"]
    log('get output for', node)
    if node["output"] is not None:
        return node["output"]
    else:
        parent_ids = list(G.predecessors(id))
        if node_type is not "input":
            inputs = [get_output(parent_id) for parent_id in parent_ids]
            inputs = L.Concatenate()(inputs) if len(inputs) > 1 else inputs[0]
            if node_type is "recurrent":
                output = inputs
            else:
                brick = build_brick(id, inputs)
                log("got brick", brick)
                output = brick(inputs)
                if "output_shape" not in keys and "gives_feedback" not in keys:
                    try:
                        output = L.Add()([inputs, output])
                    except Exception as e:
                        log("error adding inputs to output", e)
                    try:
                        output = L.Concatenate()([inputs, output])
                    except Exception as e:
                        log("error concatenating inputs to output", e)
        else:
            output = build_brick(id)
        if "output_shape" not in keys:
            output = InstanceNormalization()(output)
        G.node[id]["output"] = output
        log("got output", output)
        return output
Esempio n. 14
0
def mutate(hp):
    boxes = count_boxes()
    log(f"{boxes} boxes")
    if hp.force_recursion == 1 and k is 0:
        log("forced recursion!")
        recurse(hp)
    # elif boxes > ALWAYS_DECIMATE_IF_MORE_THAN:
    #     log("forced decimation!")
    #     decimate(0.2)
    else:
        mutation = np.random.choice([
            recurse, decimate, connect, split_edges, insert_motif, add_edge,
            delete_edge, delete_node, split_edge, do_nothing
        ],
                                    1,
                                    p=hp.mutation_distribution).item(0)
        if mutation in [recurse, insert_motif]:
            mutation(hp)
        else:
            mutation()
    if CLEAN_UP:
        clean_up()
Esempio n. 15
0
def insert_motif(hp, id=None):
    """Replace a node with a subgraph."""
    global G
    id = random.choice(list(G.nodes())) if id is None else id
    if is_blacklisted(id):
        return
    M, new_ids = get_regulon(hp, parent=id)
    G = nx.compose(G, M)
    # connect the node's predecessors to all nodes in first layer
    predecessors = G.predecessors(id)
    successors = new_ids[0]
    for predecessor in predecessors:
        for successor in successors:
            log(f"{predecessor}--->{successor}")
            G.add_edge(predecessor, successor)
    # connect the last layer of the motif to the node's successors
    predecessors = new_ids[-1]
    successors = list(G.successors(id))
    for predecessor in predecessors:
        for successor in successors:
            log(f"{predecessor}--->{successor}")
            G.add_edge(predecessor, successor)
    G.remove_node(id)
Esempio n. 16
0
def differentiate(hp):
    """Assign ops and arguments to nodes."""
    if hp.force_skip:
        G.add_edge("input", "output")
    for node in G.nodes(data=True):
        node_id, node_data = node
        log("differentiate", node_id, node_data)
        node_data["output"] = None
        node_data["op"] = None
        if node_data["shape"] is "square" or "output" in node_id:
            if node_id == "output":
                d_out = node_data["output_shape"][-1]
                node_type = hp.last_layer
                activation = "tanh"
            else:
                node_type = str(
                    np.random.choice([
                        'sepconv1d', 'transformer', 'k_conv1', 'k_conv2',
                        'k_conv3', "deep", "wide_deep"
                    ],
                                     1,
                                     p=hp.layer_distribution).item(0))
                activation = str(
                    np.random.choice([
                        'tanh', 'linear', 'relu', 'selu', 'elu', 'sigmoid',
                        'hard_sigmoid', 'exponential', 'softmax', 'softplus',
                        'softsign', 'gaussian', 'sin', 'cos', 'swish'
                    ],
                                     1,
                                     p=hp.activation_distribution).item(0))
                d_out = None
                node_data["force_residual"] = random.random(
                ) < hp.p_force_residual
            node_data["activation"] = clean_activation(activation)
            node_data["node_type"] = node_type
            node_data['style'] = ""
            if node_type == 'sepconv1d':
                if d_out is None:
                    d_out = safe_sample(hp.min_filters, hp.max_filters)
                node_data["filters"] = d_out
                node_data["kernel_size"] = 1
            if node_type == "transformer":
                if d_out is None:
                    d_out = safe_sample(hp.min_units,
                                        hp.max_units) * hp.attn_heads
                node_data["d_model"] = d_out
                node_data["n_heads"] = 2 if d_out % 2 == 0 else 1
            if "k_conv" in node_type or node_type in ["deep", "wide_deep"]:
                layers = design_layers(hp, d_out, activation)
                if d_out is None:
                    d_out = layers[-1][0]
                node_data["stddev"] = hp.stddev
                node_data['layers'] = layers
                node_data["d_out"] = d_out
                if node_type in ["deep", "wide_deep"]:
                    node_data['kernel'] = node_type
                else:
                    node_data['kernel'] = "wide_deep" if random.random(
                    ) < hp.p_wide_deep else "deep"
            label = f"{node_type}"
            log(f"set {node_id} to {label}")
            node_data["label"] = label
            node_data["color"] = "green"
            # we handle recurrent shapes:
            try:
                feedback_node_id = f"{node_id}_feedback"
                input_shape = (None, d_out)
                log(f"attempt to set input_shape for {feedback_node_id} to {input_shape}"
                    )
                feedback_node = G.node[feedback_node_id]
                feedback_node["input_shape"] = input_shape
                node_data["gives_feedback"] = True
            except Exception as e:
                log("ERROR HANDLING FEEDBACK SHAPE:", e)
Esempio n. 17
0
def do_nothing():
    log("did nothing")