Esempio n. 1
0
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()

    # train_and_save_models(x_train, y_train)

    print("Loading models...")
    # l0_model = tf.keras.models.load_model('models/l0_model')
    l1_model = tf.keras.models.load_model('models/l1_model')
    l2_model = tf.keras.models.load_model('models/l2_model')
    l3_model = tf.keras.models.load_model('models/l3_model')
    # l4_model = tf.keras.models.load_model('models/l4_model')

    all_model_accuracies = []
    all_model_times = []
    all_model_simple_percents = []
    all_model_complex_percents = []

    for i in range(5):
        print("Run l1 l2 l3... #" + str(i))
        all_conf_values, accuracies, times, simple_percents, complex_percents = run_combinations(
            l1_model, l2_model, l3_model, x_test, y_test)
        all_model_accuracies.append(accuracies)
        all_model_times.append(times)
        all_model_simple_percents.append(simple_percents)
        all_model_complex_percents.append(complex_percents)

    print("All Conf Values:", all_conf_values)
    print("L1 L2 L3 Accuracies:", np.mean(all_model_accuracies, axis=0))
    print("L1 L2 L3 Times:", np.mean(all_model_times, axis=0))
    print("L1 L2 L3 Simple Percents:",
          np.mean(all_model_simple_percents, axis=0))
    print("L1 L2 L3 Complex Percents:",
          np.mean(all_model_complex_percents, axis=0))
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()
    num_classes = 10
    #y_train = tf.keras.utils.to_categorical(y_train, num_classes)

    train_and_save_models(x_train, y_train)
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()

    #train_and_save_models(x_train, y_train)

    print("Loading models...")
    # l0_model = tf.keras.models.load_model('models/l0_model')
    l1_model = tf.keras.models.load_model('models/l1_model')
    l2_model = tf.keras.models.load_model('models/l2_model')
    l3_model = tf.keras.models.load_model('models/l3_model')
    # l4_model = tf.keras.models.load_model('models/l4_model')

    p_yy, p_yn, p_ny, p_nn, yn_values, ny_values = run_combinations(
        l1_model, l2_model, x_test, y_test)
    print("L1 L2 values:", p_yy, p_ny, p_yn, p_nn)
    print(yn_values)
    print(ny_values)

    p_yy, p_yn, p_ny, p_nn, yn_values, ny_values = run_combinations(
        l1_model, l3_model, x_test, y_test)
    print("L1 L3 values:", p_yy, p_ny, p_yn, p_nn)
    print(yn_values)
    print(ny_values)

    p_yy, p_yn, p_ny, p_nn, yn_values, ny_values = run_combinations(
        l2_model, l3_model, x_test, y_test)
    print("L2 L3 values:", p_yy, p_ny, p_yn, p_nn)
    print(yn_values)
    print(ny_values)
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()

    # train_and_save_models(x_train, y_train)

    print("Loading models...")
    # l0_model = tf.keras.models.load_model('models/l0_model')
    l1_model = tf.keras.models.load_model('models/l1_model')
    l2_model = tf.keras.models.load_model('models/l2_model')
    l3_model = tf.keras.models.load_model('models/l3_model')
    # l4_model = tf.keras.models.load_model('models/l4_model')

    # before_time = time.time()
    # accuracy = l0_model.evaluate(x_test, y_test)
    # print("Time", time.time() - before_time)

    # before_time = time.time()
    # accuracy = l1_model.evaluate(x_test, y_test)
    # print("Time", time.time() - before_time)

    # before_time = time.time()
    # accuracy = l2_model.evaluate(x_test, y_test)
    # print("Time", time.time() - before_time)

    # before_time = time.time()
    # accuracy = l3_model.evaluate(x_test, y_test)
    # print("Time", time.time() - before_time)

    # before_time = time.time()
    # accuracy = l4_model.evaluate(x_test, y_test)
    # print("Time", time.time() - before_time)

    all_model_accuracies = []
    all_model_times = []
    all_model_simple_percents = []
    all_model_complex_percents = []
    all_model_thresholds = []

    for i in range(1):
        print("Run l1 l2... #" + str(i))
        all_conf_values, accuracies, times, simple_percents, thresholds = run_combinations(
            l2_model, l3_model, x_test, y_test)
        all_model_accuracies.append(accuracies)
        all_model_times.append(times)
        all_model_simple_percents.append(simple_percents)
        all_model_thresholds.append(thresholds)

    print("All Conf Values:", all_conf_values)
    print("L1 L2 Accuracies:", np.mean(all_model_accuracies, axis=0))
    print("L1 L2 Times:", np.mean(all_model_times, axis=0))
    print("L1 L2 Simple Percents:", np.mean(all_model_simple_percents, axis=0))
    print("L1 L2 Thresholds:", np.mean(all_model_thresholds, axis=0))
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()
    y_test = tf.squeeze(y_test)

    #train_and_save_models(x_train, y_train)

    print("Loading models...")
    l1_model = tf.keras.models.load_model('models/mnist/l1_model')
    l2_model = tf.keras.models.load_model('models/mnist/l2_model')
    l3_model = tf.keras.models.load_model('models/mnist/l3_model')
    l4_model = tf.keras.models.load_model('models/mnist/l4_model')
    l5_model = tf.keras.models.load_model('models/mnist/l5_model')
    l6_model = tf.keras.models.load_model('models/mnist/l6_model')
    l7_model = tf.keras.models.load_model('models/mnist/l7_model')
    l8_model = tf.keras.models.load_model('models/mnist/l8_model')
    l9_model = tf.keras.models.load_model('models/mnist/l9_model')
    l10_model = tf.keras.models.load_model('models/mnist/l10_model')


    # Get dictionary of counts of each class in y_test
    y_test_np = y_test.numpy()
    #unique, counts = np.unique(y_test.numpy(), return_counts=True)
    count_dicts = []

    # Set up accuracy grid
    accuracies = np.zeros((10, 10))

    # Iterate over all models and get their predicted outputs
    models = [l1_model, l2_model, l3_model, l4_model, l5_model, l6_model, l7_model, l8_model, l9_model, l10_model]
    for i in range(10):
        model = models[i]

        model_probs = model.predict(x_test)
        model_preds = np.argmax(model_probs, axis=1)

        unique, counts = np.unique(model_preds, return_counts=True)
        count_dicts.append(dict(zip(unique, counts)))

        # Iterate over all 10 classes
        for j in range(10):
            # Compute the number of times where the prediction matches the test output for that class
            class_count = len(np.where((model_preds == j) & (y_test_np == j))[0])
            accuracies[i][j] = class_count / count_dicts[i][j]


    print(accuracies)
Esempio n. 6
0
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()

    #train_and_save_models(x_train, y_train)

    print("Loading models...")
    # l0_model = tf.keras.models.load_model('models/l0_model')
    l1_model = tf.keras.models.load_model('models/l1_model')
    l2_model = tf.keras.models.load_model('models/l2_model')
    l3_model = tf.keras.models.load_model('models/l3_model')
    # l4_model = tf.keras.models.load_model('models/l4_model')

    p_yy, p_yn, p_ny, p_nn, yn_sub, ny_sub, nn_sub = run_combinations(
        l1_model, l2_model, x_test, y_test)
    print("L1 L2 values:", p_yy, p_ny, p_yn, p_nn)
    #print("YY:", yy_values)
    print("YN:", yn_sub / p_yn)
    print("NY:", ny_sub / p_ny)
    print("NN:", nn_sub / p_nn)
    #print("L1: ", l1_values[:1000])

    p_yy, p_yn, p_ny, p_nn, yn_sub, ny_sub, nn_sub = run_combinations(
        l1_model, l3_model, x_test, y_test)
    print("L1 L3 values:", p_yy, p_ny, p_yn, p_nn)
    #print("YY:", yy_values)
    print("YN:", yn_sub / p_yn)
    print("NY:", ny_sub / p_ny)
    print("NN:", nn_sub / p_nn)
    #print("L1: ", l1_values[:1000])

    p_yy, p_yn, p_ny, p_nn, yn_sub, ny_sub, nn_sub = run_combinations(
        l2_model, l3_model, x_test, y_test)
    print("L2 L3 values:", p_yy, p_ny, p_yn, p_nn)
    #print("YY:", yy_values)
    print("YN:", yn_sub / p_yn)
    print("NY:", ny_sub / p_ny)
    print("NN:", nn_sub / p_nn)
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()
    y_train2 = tf.keras.utils.to_categorical(y_train, 10)
    #y_test = tf.squeeze(y_test)

    print("Loading models...")
    l1_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l1_model, epochs=5, verbose=True)
    l1_model._estimator_type = "classifier"
    l2_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l2_model, epochs=5, verbose=True)
    l2_model._estimator_type = "classifier"
    l3_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l3_model, epochs=5, verbose=True)
    l3_model._estimator_type = "classifier"
    l4_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l4_model, epochs=5, verbose=True)
    l4_model._estimator_type = "classifier"

    ensemble1 = StackingClassifier(estimators=[('l2', l2_model),
                                               ('l3', l3_model),
                                               ('l4', l4_model)],
                                   final_estimator=RandomForestClassifier(
                                       random_state=42, n_estimators=10))

    ensemble2 = StackingClassifier(
        estimators=[('l2', l2_model), ('l3', l3_model), ('l4', l4_model)],
        final_estimator=RandomForestClassifier(random_state=42))

    ensemble3 = StackingClassifier(estimators=[('l2', l2_model),
                                               ('l3', l3_model),
                                               ('l4', l4_model)],
                                   final_estimator=RandomForestClassifier(
                                       random_state=42, n_estimators=500))

    ensemble4 = StackingClassifier(
        estimators=[('l2', l2_model), ('l3', l3_model), ('l4', l4_model)],
        final_estimator=HistGradientBoostingClassifier(random_state=42,
                                                       max_iter=10))

    ensemble5 = StackingClassifier(
        estimators=[('l2', l2_model), ('l3', l3_model), ('l4', l4_model)],
        final_estimator=HistGradientBoostingClassifier(random_state=42))

    ensemble1.fit(x_train, y_train)
    #print("L123 Done")
    ensemble2.fit(x_train, y_train)
    #print("L124 Done")
    ensemble3.fit(x_train, y_train)
    #print("L134 Done")
    ensemble4.fit(x_train, y_train)
    #print("L234 Done")
    ensemble5.fit(x_train, y_train)
    #print("L234 Done")

    for clf in (ensemble1, ensemble2, ensemble3, ensemble4, ensemble5):
        before_time = time.time()
        y_pred = clf.predict(x_test)
        model_time = time.time() - before_time

        print(clf.__class__.__name__, accuracy_score(y_test, y_pred))
        print("Time: ", model_time)
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()
    #y_test = tf.squeeze(y_test)

    print("Loading models...")
    l1_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l1_model, epochs=5)
    l1_model._estimator_type = "classifier"
    l2_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l2_model, epochs=5)
    l2_model._estimator_type = "classifier"
    l3_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l3_model, epochs=5)
    l3_model._estimator_type = "classifier"
    l4_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l4_model, epochs=5)
    l4_model._estimator_type = "classifier"

    ensemble12 = VotingClassifier(estimators=[('l1', l1_model),
                                              ('l2', l2_model)],
                                  voting='soft')
    ensemble13 = VotingClassifier(estimators=[('l1', l1_model),
                                              ('l3', l3_model)],
                                  voting='soft')
    ensemble14 = VotingClassifier(estimators=[('l1', l1_model),
                                              ('l4', l4_model)],
                                  voting='soft')
    ensemble23 = VotingClassifier(estimators=[('l2', l2_model),
                                              ('l3', l3_model)],
                                  voting='soft')
    ensemble24 = VotingClassifier(estimators=[('l2', l2_model),
                                              ('l4', l4_model)],
                                  voting='soft')
    ensemble34 = VotingClassifier(estimators=[('l3', l3_model),
                                              ('l4', l4_model)],
                                  voting='soft')

    ensemble123 = VotingClassifier(estimators=[('l1', l1_model),
                                               ('l2', l2_model),
                                               ('l3', l3_model)],
                                   voting='soft')
    ensemble124 = VotingClassifier(estimators=[('l1', l1_model),
                                               ('l2', l2_model),
                                               ('l4', l4_model)],
                                   voting='soft')
    ensemble134 = VotingClassifier(estimators=[('l1', l1_model),
                                               ('l3', l3_model),
                                               ('l4', l4_model)],
                                   voting='soft')
    ensemble234 = VotingClassifier(estimators=[('l2', l2_model),
                                               ('l3', l3_model),
                                               ('l4', l4_model)],
                                   voting='soft')

    ensemble1234 = VotingClassifier(estimators=[('l1', l1_model),
                                                ('l2', l2_model),
                                                ('l3', l3_model),
                                                ('l4', l4_model)],
                                    voting='soft')

    l1_model.fit(x_train, y_train)
    l2_model.fit(x_train, y_train)
    l3_model.fit(x_train, y_train)
    l4_model.fit(x_train, y_train)

    ensemble12.fit(x_train, y_train)
    ensemble13.fit(x_train, y_train)
    ensemble14.fit(x_train, y_train)
    ensemble23.fit(x_train, y_train)
    ensemble24.fit(x_train, y_train)
    ensemble34.fit(x_train, y_train)

    ensemble123.fit(x_train, y_train)
    ensemble124.fit(x_train, y_train)
    ensemble134.fit(x_train, y_train)
    ensemble234.fit(x_train, y_train)

    ensemble1234.fit(x_train, y_train)

    for clf in (l1_model, l2_model, l3_model, l4_model, ensemble12, ensemble13,
                ensemble14, ensemble23, ensemble24, ensemble34, ensemble123,
                ensemble124, ensemble134, ensemble234, ensemble1234):
        before_time = time.time()
        y_pred = clf.predict(x_test)
        model_time = time.time() - before_time

        print(clf.__class__.__name__, accuracy_score(y_test, y_pred))
        print("Time: ", model_time)
Esempio n. 9
0
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()
    y_train2 = tf.keras.utils.to_categorical(y_train, 10)
    #y_test = tf.squeeze(y_test)

    print("Loading models...")
    l1_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l1_model, epochs=5)
    l1_model._estimator_type = "classifier"
    l2_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l2_model, epochs=5)
    l2_model._estimator_type = "classifier"
    l3_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l3_model, epochs=5)
    l3_model._estimator_type = "classifier"
    l4_model = tf.keras.wrappers.scikit_learn.KerasClassifier(
        build_fn=models.get_l4_model, epochs=5)
    l4_model._estimator_type = "classifier"

    l1_model.fit(x_train, y_train2)
    l2_model.fit(x_train, y_train2)
    l3_model.fit(x_train, y_train2)
    l4_model.fit(x_train, y_train2)

    accuracy_scores = []

    for clf in (l1_model, l2_model, l3_model, l4_model):
        before_time = time.time()
        y_pred = clf.predict(x_test)
        model_time = time.time() - before_time

        accuracy = accuracy_score(y_test, y_pred)
        accuracy_scores.append(accuracy)

        print(clf.__class__.__name__, accuracy)
        print("Time: ", model_time)

    indices = [0, 1]
    ensemble12 = VotingClassifier(
        estimators=[('l1', l1_model), ('l2', l2_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])
    indices = [0, 2]
    ensemble13 = VotingClassifier(
        estimators=[('l1', l1_model), ('l3', l3_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])
    indices = [0, 3]
    ensemble14 = VotingClassifier(
        estimators=[('l1', l1_model), ('l4', l4_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])
    indices = [1, 2]
    ensemble23 = VotingClassifier(
        estimators=[('l2', l2_model), ('l3', l3_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])
    indices = [1, 3]
    ensemble24 = VotingClassifier(
        estimators=[('l2', l2_model), ('l4', l4_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])
    indices = [2, 3]
    ensemble34 = VotingClassifier(
        estimators=[('l3', l3_model), ('l4', l4_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])

    indices = [0, 1, 2]
    ensemble123 = VotingClassifier(
        estimators=[('l1', l1_model), ('l2', l2_model), ('l3', l3_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])
    indices = [0, 1, 3]
    ensemble124 = VotingClassifier(
        estimators=[('l1', l1_model), ('l2', l2_model), ('l4', l4_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])
    indices = [0, 2, 3]
    ensemble134 = VotingClassifier(
        estimators=[('l1', l1_model), ('l3', l3_model), ('l4', l4_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])
    indices = [1, 2, 3]
    ensemble234 = VotingClassifier(
        estimators=[('l2', l2_model), ('l3', l3_model), ('l4', l4_model)],
        voting='soft',
        weights=[accuracy_scores[i] for i in indices])

    ensemble1234 = VotingClassifier(estimators=[('l1', l1_model),
                                                ('l2', l2_model),
                                                ('l3', l3_model),
                                                ('l4', l4_model)],
                                    voting='soft',
                                    weights=accuracy_scores)

    ensemble12.fit(x_train, y_train)
    ensemble13.fit(x_train, y_train)
    ensemble14.fit(x_train, y_train)
    ensemble23.fit(x_train, y_train)
    ensemble24.fit(x_train, y_train)
    ensemble34.fit(x_train, y_train)

    ensemble123.fit(x_train, y_train)
    ensemble124.fit(x_train, y_train)
    ensemble134.fit(x_train, y_train)
    ensemble234.fit(x_train, y_train)

    ensemble1234.fit(x_train, y_train)

    for clf in (l1_model, l2_model, l3_model, l4_model, ensemble12, ensemble13,
                ensemble14, ensemble23, ensemble24, ensemble34, ensemble123,
                ensemble124, ensemble134, ensemble234, ensemble1234):
        before_time = time.time()
        y_pred = clf.predict(x_test)
        model_time = time.time() - before_time

        print(clf.__class__.__name__, accuracy_score(y_test, y_pred))
        print("Time: ", model_time)
Esempio n. 10
0
def main():
    print('Loading data...')
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()

    #train_and_save_models(x_train, y_train)

    print("Loading models...")
    # l0_model = tf.keras.models.load_model('models/l0_model')
    l1_model = tf.keras.models.load_model('models/l1_model')
    l2_model = tf.keras.models.load_model('models/l2_model')
    l3_model = tf.keras.models.load_model('models/l3_model')
    # l4_model = tf.keras.models.load_model('models/l4_model')

    l1_time = 0
    l2_time = 0
    l3_time = 0

    for i in range(5):
        before_time = time.time()
        accuracy = l1_model.predict(x_test)
        l1_time += time.time() - before_time
        print(l1_time)

        before_time = time.time()
        accuracy = l2_model.predict(x_test)
        l2_time += time.time() - before_time

        before_time = time.time()
        accuracy = l3_model.predict(x_test)
        l3_time += time.time() - before_time

    print("L1 Time:", l1_time / 5)
    print("L2 Time:", l2_time / 5)
    print("L3 Time:", l3_time / 5)

    l1_l2_accuracies = []
    l1_l3_accuracies = []
    l2_l3_accuracies = []
    l1_l2_times = []
    l1_l3_times = []
    l2_l3_times = []
    l1_l2_percents = []
    l1_l3_percents = []
    l2_l3_percents = []

    for i in range(5):
        print("Run l1 l2... #" + str(i))
        accuracies, times, simplePercents = run_combinations(l1_model, l2_model, x_test, y_test)
        l1_l2_accuracies.append(accuracies)
        l1_l2_times.append(times)
        l1_l2_percents.append(simplePercents)

        print("Run l1 l3... #" + str(i))
        accuracies, times, simplePercents = run_combinations(l1_model, l3_model, x_test, y_test)
        l1_l3_accuracies.append(accuracies)
        l1_l3_times.append(times)
        l1_l3_percents.append(simplePercents)

        print("Run l2 l3... #" + str(i))
        accuracies, times, simplePercents = run_combinations(l2_model, l3_model, x_test, y_test)
        l2_l3_accuracies.append(accuracies)
        l2_l3_times.append(times)
        l2_l3_percents.append(simplePercents)

    print("L1 L2 Accuracies:", np.mean(l1_l2_accuracies, axis=0))
    print("L1 L2 Times:", np.mean(l1_l2_times, axis=0))
    print("L1 L2 Simple Percents", np.mean(l1_l2_percents, axis=0))
    print("L1 L3 Accuracies:", np.mean(l1_l3_accuracies, axis=0))
    print("L1 L3 Times:", np.mean(l1_l3_times, axis=0))
    print("L1 L3 Simple Percents", np.mean(l1_l3_percents, axis=0))
    print("L2 L3 Accuracies:", np.mean(l2_l3_accuracies, axis=0))
    print("L2 L3 Times:", np.mean(l2_l3_times, axis=0))
    print("L2 L3 Simple Percents", np.mean(l2_l3_percents, axis=0))
Esempio n. 11
0
def main():

    run_greedy_walk = True
    run_naive = False
    # ======================================================================
    # Preparing data and trained models

    print('Loading data...')
    # Get MNIST data
    x_train, y_train, x_test, y_test = helpers.get_mnist_data()
    
    # For testing model to sort by complexity
    x_test_1 = x_test[:3333]
    y_test_1 = y_test[:3333]
    # For finding optimal confidence value
    x_test_2 = x_test[3334:6666]
    y_test_2 = y_test[3334:6666]
    # For validating optimal confidence value
    x_test_3 = x_test[6667:10000]
    y_test_3 = y_test[6667:10000]

    print('Loading models...')
    # l0_model = tf.keras.models.load_model('models/l0_model')
    l1_model = tf.keras.models.load_model('models/l1_model')
    l2_model = tf.keras.models.load_model('models/l2_model')
    l3_model = tf.keras.models.load_model('models/l3_model')

    print('Storing models in Graph object...')

    # Load saved models and store as Graph.Model object (with corresponding complexity)
    models_list = []
    for i in range(1, 4):
        current_model = tf.keras.models.load_model('models/l' + str(i) + '_model')
        current_model_object = Graph.Model(current_model)
        before_time = time.time()
        results = current_model.evaluate(x_test_1, y_test_1, verbose=0)
        after_time = time.time()

        current_model_object.accuracy = results[1]
        current_model_object.time = after_time - before_time
        current_model_object.complexity_index = i - 1

        print('complexity_index:', current_model_object.complexity_index, \
            'accuracy:', current_model_object.accuracy, 'time: ', current_model_object.time)

        models_list.append(current_model_object)

    # Create graph object and add models sorted based on complexity
    graph = Graph.Graph(models_list)
    # ======================================================================
    # Running Greedy Walk:
    if run_greedy_walk:
        print('Running Greedy Walk...')

        greedy_output = []
        # for current_model_search_time in np.flip(np.arange(0.2, 0.5, 0.05)):
        print("=========================================================")
        current_model_search_time = 0.45
        print("Greedy:", current_model_search_time)
        output, search_time, best_node_accuracy = greedy_walk(graph, 20, \
                current_model_search_time, x_test_2, y_test_2, x_test_3, y_test_3)
        if output == None:
            print('Greedy walk did not find any viable pairing')
            greedy_output.append(None)
        else:
            print('Greedy walk found', output.complexities, 'in', search_time, 'seconds')
            greedy_output.append((output.complexities, search_time, best_node_accuracy, output.optimal_confidence_value))

        print(greedy_output)

    # ======================================================================
    # Running Naive:
    if run_naive:
        naive_output = []
        # for current_model_search_time in np.arange(0.2, 0.5, 0.05):
        current_model_search_time = 0.35
        print("=========================================================")
        print("Naive:", current_model_search_time)
        output, search_time, best_node_accuracy = naive_search(models_list, current_model_search_time,\
                x_test_2, y_test_2, x_test_3, y_test_3)
        if output == None:
            print('Naive did not any find viable pairing')
            naive_output.append(None)
        else:
            print('Naive found', output.complexities, 'in', search_time, 'seconds')
            naive_output.append((output.complexities, search_time, best_node_accuracy, output.optimal_confidence_value))

        print(naive_output)