def normalisation_over_curves(self):
        preprocess = PreprocessData()
        preprocess.enable_normalisation_scaler = True
        preprocess.enable_ignore_price = True
        preprocess.feature_range = [0, 1]
        sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess.get_data(
        )

        self.plotting.plot_some_curves(
            "normalisation_over_curves",
            sets_test[0],
            sets_test_scaled[0], [25, 50, 75, 815],
            maturities,
            plot_separate=True)  # old: [25, 50, 75, 100, 600, 720, 740, 815]
    def helper(self, preprocess_type):
        preprocess = PreprocessData()
        if preprocess_type is None or preprocess_type is PreprocessType.NORMALISATION_OVER_TENORS:
            preprocess.enable_normalisation_scaler = True
            preprocess.feature_range = [0, 1]
        elif preprocess_type is PreprocessType.NORMALISATION_OVER_CURVES:
            preprocess.enable_normalisation_scaler = True
            preprocess.feature_range = [0, 1]
            preprocess.enable_ignore_price = True
        elif preprocess_type is PreprocessType.STANDARDISATION_OVER_TENORS:
            preprocess.enable_standardisation_scaler = True
        elif preprocess_type is PreprocessType.LOG_RETURNS_OVER_TENORS:
            preprocess.enable_log_returns = True

        sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess.get_data(
        )
        rescaled_first_test_set = preprocess.rescale_data(
            sets_test_scaled[0], test_dataset_names[0])

        # check that assert_allclose is working:
        # rand = np.random.random_sample(sets_test[0].shape)
        # np.testing.assert_allclose(rescaled_first_test_set, rand)

        np.testing.assert_allclose(rescaled_first_test_set, sets_test[0])