Esempio n. 1
0
def train_khorrami_aug_oulu(wdecay,lr,route_iter,folds=[4,9],model_name='vgg_capsule_disfa',epoch_stuff=[30,60],res=False,meta_data_dir = 'train_test_files_preprocess_vl'):
    out_dirs = []

    out_dir_meta = '../experiments/'+model_name+str(route_iter)
    num_epochs = epoch_stuff[1]
    epoch_start = 0
    dec_after = ['exp',0.96,epoch_stuff[0],1e-6]

    lr = lr
    im_resize = 110
    im_size = 96
    save_after = num_epochs
    type_data = 'three_im_no_neutral_just_strong_False'; n_classes = 6;
    criterion = 'margin'
    criterion_str = criterion

    # criterion = nn.CrossEntropyLoss()
    # criterion_str = 'crossentropy'
    
    init = False

    strs_append = '_'+'_'.join([str(val) for val in ['all_aug',criterion_str,init,'wdecay',wdecay,num_epochs]+dec_after+lr])
    pre_pend = 'oulu_96_'+meta_data_dir+'_'+type_data+'_'
    
    
    for split_num in folds:
        
        if res:
            strs_appendc = '_'.join([str(val) for val in ['all_aug','wdecay',wdecay,50,'step',50,0.1]+lr])
            out_dir_train = os.path.join(out_dir_meta,'oulu_'+type_data+'_'+str(split_num)+'_'+strs_appendc)
            model_file = os.path.join(out_dir_train,'model_49.pt')
            epoch_start = 50
        else:
            model_file = None    


        margin_params = None
        
        out_dir_train =  os.path.join(out_dir_meta,pre_pend+str(split_num)+strs_append)
        final_model_file = os.path.join(out_dir_train,'model_'+str(num_epochs-1)+'.pt')
        if os.path.exists(final_model_file):
            print 'skipping',final_model_file
            continue 

        train_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'.txt')
        test_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'test_'+str(split_num)+'.txt')
        mean_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'_mean.png')
        std_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'_std.png')
        
        mean_im = scipy.misc.imread(mean_file).astype(np.float32)
        std_im = scipy.misc.imread(std_file).astype(np.float32)
        print std_im.shape
        print np.min(std_im),np.max(std_im)
        print mean_im.shape
        print np.min(mean_im),np.max(mean_im)

        class_weights = util.get_class_weights(util.readLinesFromFile(train_file))

        # raw_input()

        list_of_to_dos = ['flip','rotate','scale_translate']
        
        data_transforms = {}
        data_transforms['train']= transforms.Compose([
            lambda x: augmenters.augment_image(x,list_of_to_dos,mean_im,std_im,im_size),
            transforms.ToTensor(),
            lambda x: x*255.
        ])
        data_transforms['val']= transforms.Compose([
            transforms.ToTensor(),
            lambda x: x*255.
            ])

        # train_data = dataset.CK_96_Dataset_Just_Mean(train_file, mean_file, data_transforms['train'])
        # test_data = dataset.CK_96_Dataset_Just_Mean(test_file, mean_file, data_transforms['val'])
        train_data = dataset.CK_96_Dataset(train_file, mean_file, std_file, data_transforms['train'])
        test_data = dataset.CK_96_Dataset(test_file, mean_file, std_file, data_transforms['val'])
        
        network_params = dict(n_classes=n_classes,pool_type='max',r=route_iter,init=init, class_weights = class_weights)
        # if lr[0]==0:
        batch_size = 128
        batch_size_val = 128
        # else:
        #     batch_size = 32
        #     batch_size_val = 16

        util.makedirs(out_dir_train)
        
        train_params = dict(out_dir_train = out_dir_train,
                    train_data = train_data,
                    test_data = test_data,
                    batch_size = batch_size,
                    batch_size_val = batch_size_val,
                    num_epochs = num_epochs,
                    save_after = save_after,
                    disp_after = 1,
                    plot_after = 100,
                    test_after = 1,
                    lr = lr,
                    dec_after = dec_after, 
                    model_name = model_name,
                    criterion = criterion,
                    gpu_id = 0,
                    num_workers = 0,
                    model_file = model_file,
                    epoch_start = epoch_start,
                    margin_params = margin_params,
                    network_params = network_params,
                    weight_decay=wdecay)

        print train_params
        param_file = os.path.join(out_dir_train,'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k,train_params[k])
            print str_print
            all_lines.append(str_print)
        util.writeFile(param_file,all_lines)

        train_model(**train_params)

        test_params = dict(out_dir_train = out_dir_train,
                model_num = num_epochs-1, 
                train_data = train_data,
                test_data = test_data,
                gpu_id = 0,
                model_name = model_name,
                batch_size_val = batch_size_val,
                criterion = criterion,
                margin_params = margin_params,
                network_params = network_params)
        test_model(**test_params)
        
    # getting_accuracy.print_accuracy(out_dir_meta,pre_pend,strs_append,folds,log='log.txt')
    getting_accuracy.view_loss_curves(out_dir_meta,pre_pend,strs_append,folds,num_epochs-1)
Esempio n. 2
0
def train_khorrami_aug(wdecay,
                       lr,
                       route_iter,
                       folds=[4, 9],
                       model_name='vgg_capsule_disfa',
                       epoch_stuff=[30, 60],
                       res=False,
                       class_weights=False,
                       reconstruct=False,
                       loss_weights=None,
                       model_to_test=None,
                       oulu=False,
                       dropout=0):

    out_dirs = []
    out_dir_meta = '../experiments/showing_overfitting_justhflip_' + model_name + str(
        route_iter)
    num_epochs = epoch_stuff[1]
    if model_to_test is None:
        model_to_test = num_epochs - 1

    epoch_start = 0
    dec_after = ['step', epoch_stuff[0], 0.1]

    lr = lr
    im_resize = 110
    im_size = 96
    save_after = num_epochs

    if not oulu:
        type_data = 'train_test_files'
        n_classes = 8
        train_pre = os.path.join('../data/ck_96', type_data)
        pre_pend = 'ck_96_' + type_data + '_'
    else:
        type_data = 'three_im_no_neutral_just_strong_False'
        n_classes = 6
        # 'train_test_files'; n_classes = 8;
        train_pre = os.path.join(
            '../data/Oulu_CASIA/train_test_files_preprocess_vl', type_data)
        pre_pend = 'oulu_96_' + type_data + '_'

    criterion = 'margin'
    criterion_str = criterion

    init = False
    strs_append_list = [
        'reconstruct', reconstruct, class_weights, 'all_aug', criterion_str,
        init, 'wdecay', wdecay, num_epochs
    ] + dec_after + lr + [dropout]

    if loss_weights is not None:
        strs_append_list = strs_append_list + ['lossweights'] + loss_weights
    strs_append = '_' + '_'.join([str(val) for val in strs_append_list])

    lr_p = lr[:]
    for split_num in folds:

        model_file = None
        margin_params = None

        out_dir_train = os.path.join(out_dir_meta,
                                     pre_pend + str(split_num) + strs_append)
        final_model_file = os.path.join(out_dir_train,
                                        'model_' + str(num_epochs - 1) + '.pt')
        if os.path.exists(final_model_file):
            print 'skipping', final_model_file
            continue
        else:
            print 'not skipping', final_model_file

        train_file = os.path.join(train_pre,
                                  'train_' + str(split_num) + '.txt')
        test_file = os.path.join(train_pre, 'test_' + str(split_num) + '.txt')
        mean_file = os.path.join(train_pre,
                                 'train_' + str(split_num) + '_mean.png')
        std_file = os.path.join(train_pre,
                                'train_' + str(split_num) + '_std.png')

        mean_im = scipy.misc.imread(mean_file).astype(np.float32)
        std_im = scipy.misc.imread(std_file).astype(np.float32)

        class_weights = util.get_class_weights(
            util.readLinesFromFile(train_file))

        list_of_to_dos = ['flip']

        data_transforms = {}
        data_transforms['train'] = transforms.Compose([
            lambda x: augmenters.augment_image(x, list_of_to_dos, mean_im,
                                               std_im, im_size),
            transforms.ToTensor(), lambda x: x * 255.
        ])
        data_transforms['val'] = transforms.Compose(
            [transforms.ToTensor(), lambda x: x * 255.])

        train_data = dataset.CK_96_Dataset(train_file, mean_file, std_file,
                                           data_transforms['train'])
        test_data = dataset.CK_96_Dataset(test_file, mean_file, std_file,
                                          data_transforms['val'])

        network_params = dict(n_classes=n_classes,
                              pool_type='max',
                              r=route_iter,
                              init=init,
                              class_weights=class_weights,
                              reconstruct=reconstruct,
                              loss_weights=loss_weights,
                              dropout=dropout)

        batch_size = 128
        batch_size_val = None

        util.makedirs(out_dir_train)

        train_params = dict(out_dir_train=out_dir_train,
                            train_data=train_data,
                            test_data=test_data,
                            batch_size=batch_size,
                            batch_size_val=batch_size_val,
                            num_epochs=num_epochs,
                            save_after=save_after,
                            disp_after=1,
                            plot_after=100,
                            test_after=1,
                            lr=lr,
                            dec_after=dec_after,
                            model_name=model_name,
                            criterion=criterion,
                            gpu_id=0,
                            num_workers=2,
                            model_file=model_file,
                            epoch_start=epoch_start,
                            margin_params=margin_params,
                            network_params=network_params,
                            weight_decay=wdecay)
        test_params = dict(
            out_dir_train=out_dir_train,
            model_num=model_to_test,
            # num_epochs-1,
            train_data=train_data,
            test_data=test_data,
            gpu_id=0,
            model_name=model_name,
            batch_size_val=batch_size_val,
            criterion=criterion,
            margin_params=margin_params,
            network_params=network_params)

        print train_params
        param_file = os.path.join(out_dir_train, 'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k, train_params[k])
            print str_print
            all_lines.append(str_print)
        util.writeFile(param_file, all_lines)

        if reconstruct:
            train_model_recon(**train_params)
            # test_model_recon(**test_params)
        else:
            train_model(**train_params)
Esempio n. 3
0
def train_khorrami_aug(wdecay,lr,route_iter,folds=[4,9],model_name='vgg_capsule_disfa',epoch_stuff=[30,60],res=False, class_weights = False, reconstruct = False, oulu = False, meta_data_dir = None,loss_weights = None, exp = False, non_peak = False, model_to_test = None, dropout = None):
    out_dirs = []

    out_dir_meta = '../experiments_dropout/'+model_name+str(route_iter)
    num_epochs = epoch_stuff[1]
    if model_to_test is None:
        model_to_test = num_epochs -1

    epoch_start = 0
    if exp:
        dec_after = ['exp',0.96,epoch_stuff[0],1e-6]
    # dec_after = ['exp',0.96,epoch_stuff[0],1e-6]
    else:
        dec_after = ['step',epoch_stuff[0],0.1]

    lr = lr
    im_resize = 110
    im_size = 96
    save_after = 100
    if non_peak:
        type_data = 'train_test_files_non_peak_one_third'; n_classes = 8;
        train_pre = os.path.join('../data/ck_96',type_data)
        test_pre =  os.path.join('../data/ck_96','train_test_files')
    else:
        type_data = 'train_test_files'; n_classes = 8;
        train_pre = os.path.join('../data/ck_96',type_data)
        test_pre =  os.path.join('../data/ck_96',type_data)

    if oulu:
        type_data = 'three_im_no_neutral_just_strong_False'; n_classes = 6;
    criterion = 'margin'
    criterion_str = criterion

    # criterion = nn.CrossEntropyLoss()
    # criterion_str = 'crossentropy'
    
    init = False
    strs_append_list = ['reconstruct',reconstruct,class_weights,'flip',criterion_str,init,'wdecay',wdecay,num_epochs]+dec_after+lr+['dropout',dropout]

    if loss_weights is not None:
        strs_append_list = strs_append_list     +['lossweights']+loss_weights
    strs_append = '_'+'_'.join([str(val) for val in strs_append_list])
    
    if oulu:
        pre_pend = 'oulu_96_'+meta_data_dir+'_'
    else:
        pre_pend = 'ck_96_'+type_data+'_'
    
    lr_p=lr[:]
    for split_num in folds:
        
        if res:

            strs_appendc = '_'+'_'.join([str(val) for val in ['reconstruct',reconstruct,True,'all_aug',criterion_str,init,'wdecay',wdecay,600,'step',600,0.1]+lr_p])
            out_dir_train = os.path.join(out_dir_meta,pre_pend+str(split_num)+strs_appendc)
            model_file = os.path.join(out_dir_train,'model_599.pt')
            epoch_start = 600
            lr =[0.1*lr_curr for lr_curr in lr_p]
        else:
            model_file = None    


        margin_params = None
        
        out_dir_train =  os.path.join(out_dir_meta,pre_pend+str(split_num)+strs_append)
        final_model_file = os.path.join(out_dir_train,'model_'+str(num_epochs-1)+'.pt')
        if os.path.exists(final_model_file):
            print 'skipping',final_model_file
            # raw_input()
            continue 
        else:
            print 'not skipping', final_model_file
            # raw_input()
            # continue

        if not oulu:
            # train_file = '../data/ck_96/train_test_files/train_'+str(split_num)+'.txt'
            # test_file = '../data/ck_96/train_test_files/test_'+str(split_num)+'.txt'
            # mean_file = '../data/ck_96/train_test_files/train_'+str(split_num)+'_mean.png'
            # std_file = '../data/ck_96/train_test_files/train_'+str(split_num)+'_std.png'

            train_file = os.path.join(train_pre,'train_'+str(split_num)+'.txt')

            test_file_easy = os.path.join(train_pre,'test_'+str(split_num)+'.txt')
            
            test_file = os.path.join(test_pre,'test_'+str(split_num)+'.txt')
            mean_file = os.path.join(train_pre,'train_'+str(split_num)+'_mean.png')
            std_file = os.path.join(train_pre,'train_'+str(split_num)+'_std.png')

        else:
            train_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'.txt')
            test_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'test_'+str(split_num)+'.txt')
            mean_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'_mean.png')
            std_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'_std.png')

        mean_im = scipy.misc.imread(mean_file).astype(np.float32)
        std_im = scipy.misc.imread(std_file).astype(np.float32)

        class_weights = util.get_class_weights(util.readLinesFromFile(train_file))

        # print std_im.shape
        # print np.min(std_im),np.max(std_im)
        # raw_input()

        list_of_to_dos = ['flip']
        # ,'rotate','scale_translate', 'pixel_augment']
        
        data_transforms = {}
        data_transforms['train']= transforms.Compose([
            lambda x: augmenters.augment_image(x,list_of_to_dos,mean_im,std_im,im_size),
            transforms.ToTensor(),
            lambda x: x*255.
        ])
        data_transforms['val']= transforms.Compose([
            transforms.ToTensor(),
            lambda x: x*255.
            ])

        # train_data = dataset.CK_96_Dataset_Just_Mean(train_file, mean_file, data_transforms['train'])
        # test_data = dataset.CK_96_Dataset_Just_Mean(test_file, mean_file, data_transforms['val'])

        print train_file
        print test_file
        print std_file
        print mean_file
        # raw_input()

        train_data = dataset.CK_96_Dataset(train_file, mean_file, std_file, data_transforms['train'])
        train_data_no_t = dataset.CK_96_Dataset(test_file_easy, mean_file, std_file, data_transforms['val'])
        test_data = dataset.CK_96_Dataset(test_file, mean_file, std_file, data_transforms['val'])
        
        if dropout is not None:
            network_params = dict(n_classes=n_classes,pool_type='max',r=route_iter,init=init,class_weights = class_weights, reconstruct = reconstruct,loss_weights = loss_weights, dropout = dropout)
        else:    
            network_params = dict(n_classes=n_classes,pool_type='max',r=route_iter,init=init,class_weights = class_weights, reconstruct = reconstruct,loss_weights = loss_weights)
        # if lr[0]==0:
        batch_size = 128
        batch_size_val = 128
        # else:
        #     batch_size = 32
        #     batch_size_val = 16

        util.makedirs(out_dir_train)
        
        train_params = dict(out_dir_train = out_dir_train,
                    train_data = train_data,
                    test_data = test_data,
                    batch_size = batch_size,
                    batch_size_val = batch_size_val,
                    num_epochs = num_epochs,
                    save_after = save_after,
                    disp_after = 1,
                    plot_after = 100,
                    test_after = 1,
                    lr = lr,
                    dec_after = dec_after, 
                    model_name = model_name,
                    criterion = criterion,
                    gpu_id = 0,
                    num_workers = 2,
                    model_file = model_file,
                    epoch_start = epoch_start,
                    margin_params = margin_params,
                    network_params = network_params,
                    weight_decay=wdecay)
        test_params = dict(out_dir_train = out_dir_train,
                    model_num = model_to_test,
                    # num_epochs-1, 
                    train_data = train_data,
                    test_data = test_data,
                    gpu_id = 0,
                    model_name = model_name,
                    batch_size_val = batch_size_val,
                    criterion = criterion,
                    margin_params = margin_params,
                    network_params = network_params)
        test_params_train = dict(**test_params)
        test_params_train['test_data'] = train_data_no_t
        test_params_train['post_pend'] = '_easy'


        print train_params
        param_file = os.path.join(out_dir_train,'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k,train_params[k])
            print str_print
            all_lines.append(str_print)
        util.writeFile(param_file,all_lines)


       # if reconstruct:
        train_model_recon(**train_params)
        # test_model_recon(**test_params)
        # else:
        #     train_model(**train_params)
        #     test_model(**test_params)


        
    getting_accuracy.print_accuracy(out_dir_meta,pre_pend,strs_append,folds,log='log.txt')
Esempio n. 4
0
def train_khorrami_aug(wdecay,lr,route_iter,folds=[4,9],model_name='vgg_capsule_disfa',epoch_stuff=[30,60],res=False, class_weights = False, reconstruct = False):
    out_dirs = []

    out_dir_meta = '../experiments/'+model_name+str(route_iter)
    num_epochs = epoch_stuff[1]
    epoch_start = 0
    # dec_after = ['exp',0.96,epoch_stuff[0],1e-6]
    dec_after = ['step',epoch_stuff[0],0.1]

    lr = lr
    im_resize = 110
    im_size = 96
    save_after = 100
    type_data = 'train_test_files'; n_classes = 8;
    criterion = 'margin'
    criterion_str = criterion

    # criterion = nn.CrossEntropyLoss()
    # criterion_str = 'crossentropy'
    
    init = False
    loss_weights = [1.,0.5,0.5]

    strs_append = '_'+'_'.join([str(val) for val in ['au_sup',loss_weights,'reconstruct',reconstruct,class_weights,'all_aug',criterion_str,init,'wdecay',wdecay,num_epochs]+dec_after+lr])
    pre_pend = 'ck_96_'
    
    lr_p=lr[:]
    for split_num in folds:
        
        if res:

            strs_appendc = '_'+'_'.join([str(val) for val in ['reconstruct',reconstruct,True,'all_aug',criterion_str,init,'wdecay',wdecay,600,'step',600,0.1]+lr_p])
            out_dir_train = os.path.join(out_dir_meta,pre_pend+str(split_num)+strs_appendc)
            model_file = os.path.join(out_dir_train,'model_300.pt')
            epoch_start = 300
            lr =[0.1*lr_curr for lr_curr in lr_p]
        else:
            model_file = None    


        margin_params = None
        
        out_dir_train =  os.path.join(out_dir_meta,pre_pend+str(split_num)+strs_append)
        final_model_file = os.path.join(out_dir_train,'model_'+str(num_epochs-1)+'.pt')
        if os.path.exists(final_model_file):
            print 'skipping',final_model_file
            continue 

        train_file = '../data/ck_96/train_test_files/train_emofacscombo_'+str(split_num)+'.txt'
        test_file = '../data/ck_96/train_test_files/test_emofacscombo_'+str(split_num)+'.txt'
        mean_file = '../data/ck_96/train_test_files/train_'+str(split_num)+'_mean.png'
        std_file = '../data/ck_96/train_test_files/train_'+str(split_num)+'_std.png'
        
        mean_im = scipy.misc.imread(mean_file).astype(np.float32)
        std_im = scipy.misc.imread(std_file).astype(np.float32)

        if class_weights:
            print class_weights
            actual_class_weights,au_class_weights = util.get_class_weights(util.readLinesFromFile(train_file),au=True)
            print actual_class_weights
            print au_class_weights
            # actual_class_weights = None
            # au_class_weights = None 
        else:
            actual_class_weights = None
            au_class_weights = None

        # print std_im.shape
        # print np.min(std_im),np.max(std_im)
        # raw_input()

        list_of_to_dos = ['flip','rotate','scale_translate','pixel_augment']
        
        data_transforms = {}
        data_transforms['train']= transforms.Compose([
            lambda x: augmenters.augment_image(x,list_of_to_dos,mean_im,std_im,im_size),
            transforms.ToTensor(),
            lambda x: x*255.
        ])
        data_transforms['val']= transforms.Compose([
            transforms.ToTensor(),
            lambda x: x*255.
            ])

        train_data = dataset.CK_96_Dataset_WithAU(train_file, mean_file, std_file, data_transforms['train'])
        test_data = dataset.CK_96_Dataset_WithAU(test_file, mean_file, std_file, data_transforms['val'])
        
        network_params = dict(n_classes=n_classes,pool_type='max',r=route_iter,init=init,class_weights = actual_class_weights, reconstruct = reconstruct,au_sup = True, class_weights_au = au_class_weights,loss_weights = loss_weights)

        # if lr[0]==0:
        batch_size = 128
        batch_size_val = 128
        # else:
        #     batch_size = 32
        #     batch_size_val = 16

        util.makedirs(out_dir_train)
        
        train_params = dict(out_dir_train = out_dir_train,
                    train_data = train_data,
                    test_data = test_data,
                    batch_size = batch_size,
                    batch_size_val = batch_size_val,
                    num_epochs = num_epochs,
                    save_after = save_after,
                    disp_after = 1,
                    plot_after = 100,
                    test_after = 1,
                    lr = lr,
                    dec_after = dec_after, 
                    model_name = model_name,
                    criterion = criterion,
                    gpu_id = 0,
                    num_workers = 0,
                    model_file = model_file,
                    epoch_start = epoch_start,
                    margin_params = margin_params,
                    network_params = network_params,
                    weight_decay=wdecay)

        print train_params
        param_file = os.path.join(out_dir_train,'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k,train_params[k])
            print str_print
            all_lines.append(str_print)
        util.writeFile(param_file,all_lines)

        # if reconstruct:
        train_model_recon_au(**train_params)
        # else:
        #     train_model(**train_params)
        #     test_params = dict(out_dir_train = out_dir_train,
        #             model_num = num_epochs-1, 
        #             train_data = train_data,
        #             test_data = test_data,
        #             gpu_id = 0,
        #             model_name = model_name,
        #             batch_size_val = batch_size_val,
        #             criterion = criterion,
        #             margin_params = margin_params,
        #             network_params = network_params)
        #     test_model(**test_params)
        
    getting_accuracy.print_accuracy(out_dir_meta,pre_pend,strs_append,folds,log='log.txt')
Esempio n. 5
0
def trying_out_recon(wdecay, lr):
    for split_num in [4, 9]:
        out_dir_meta = '../experiments/oulu_with_recon_0.5_r3/'
        route_iter = 3
        num_epochs = 100
        epoch_start = 0
        # dec_after = ['exp',0.96,3,1e-6]
        dec_after = ['step', 100, 0.1]

        lr = lr
        # [0.001]
        pool_type = 'max'
        im_size = 96
        model_name = 'khorrami_capsule_reconstruct'
        save_after = 50
        type_data = 'three_im_no_neutral_just_strong'
        n_classes = 6

        # strs_append = '_'.join([str(val) for val in ['all_aug','wdecay',wdecay,pool_type,500,'step',500,0.1]+lr])
        # out_dir_train = os.path.join(out_dir_meta,'oulu_'+type_data+'_'+str(split_num)+'_'+strs_append)
        # model_file = os.path.join(out_dir_train,'model_499.pt')
        # type_data = 'single_im'
        model_file = None

        criterion = 'margin'
        margin_params = None
        spread_loss_params = dict(end_epoch=int(num_epochs * 0.5),
                                  decay_steps=5,
                                  init_margin=0.5,
                                  max_margin=0.5)
        # spread_loss_params = {'end_epoch':int(num_epochs*0.9),'decay_steps':5,'init_margin' : 0.9, 'max_margin' : 0.9}

        strs_append = '_'.join([
            str(val)
            for val in ['justflip', 'wdecay', wdecay, pool_type, num_epochs] +
            dec_after + lr
        ])
        out_dir_train = os.path.join(
            out_dir_meta,
            'oulu_' + type_data + '_' + str(split_num) + '_' + strs_append)
        print out_dir_train

        train_file = os.path.join(
            '../data/Oulu_CASIA', 'train_test_files_preprocess_maheen_vl_gray',
            type_data, 'train_' + str(split_num) + '.txt')
        test_file = os.path.join('../data/Oulu_CASIA',
                                 'train_test_files_preprocess_maheen_vl_gray',
                                 type_data, 'test_' + str(split_num) + '.txt')
        mean_std_file = os.path.join(
            '../data/Oulu_CASIA', 'train_test_files_preprocess_maheen_vl_gray',
            type_data, 'train_' + str(split_num) + '_mean_std_val_0_1.npy')

        class_weights = util.get_class_weights(
            util.readLinesFromFile(train_file))

        mean_std = np.load(mean_std_file)

        print mean_std

        data_transforms = {}
        data_transforms['train'] = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize((im_size, im_size)),
            # transforms.Resize((102,102)),
            # transforms.RandomCrop(im_size),
            transforms.RandomHorizontalFlip(),
            # transforms.RandomRotation(15),
            # transforms.ColorJitter(),
            transforms.ToTensor(),
            transforms.Normalize([float(mean_std[0])], [float(mean_std[1])])
        ])
        data_transforms['val'] = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize((im_size, im_size)),
            transforms.ToTensor(),
            transforms.Normalize([float(mean_std[0])], [float(mean_std[1])])
        ])
        # data_transforms['val_center']= transforms.Compose([
        #     transforms.ToPILImage(),
        #     transforms.Resize((102,102)),
        #     transforms.CenterCrop(im_size),
        #     transforms.ToTensor(),
        #     transforms.Normalize([float(mean_std[0])],[float(mean_std[1])])
        #     ])

        train_data = dataset.Oulu_Static_Dataset(train_file,
                                                 data_transforms['train'])
        test_data = dataset.Oulu_Static_Dataset(test_file,
                                                data_transforms['val'])
        # test_data_center = dataset.Oulu_Static_Dataset(test_file,  data_transforms['val_center'])

        network_params = dict(n_classes=n_classes,
                              spread_loss_params=spread_loss_params,
                              pool_type=pool_type,
                              r=route_iter,
                              init=False,
                              reconstruct=True,
                              class_weights=class_weights)

        batch_size = 64
        batch_size_val = 64

        util.makedirs(out_dir_train)

        train_params = dict(out_dir_train=out_dir_train,
                            train_data=train_data,
                            test_data=test_data,
                            batch_size=batch_size,
                            batch_size_val=batch_size_val,
                            num_epochs=num_epochs,
                            save_after=save_after,
                            disp_after=1,
                            plot_after=10,
                            test_after=1,
                            lr=lr,
                            dec_after=dec_after,
                            model_name=model_name,
                            criterion=criterion,
                            gpu_id=0,
                            num_workers=0,
                            model_file=model_file,
                            epoch_start=epoch_start,
                            margin_params=margin_params,
                            network_params=network_params,
                            weight_decay=wdecay)

        print train_params
        param_file = os.path.join(out_dir_train, 'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k, train_params[k])
            print str_print
            all_lines.append(str_print)
        util.writeFile(param_file, all_lines)

        train_model(**train_params)

        test_params = dict(out_dir_train=out_dir_train,
                           model_num=num_epochs - 1,
                           train_data=train_data,
                           test_data=test_data,
                           gpu_id=0,
                           model_name=model_name,
                           batch_size_val=batch_size_val,
                           criterion=criterion,
                           margin_params=margin_params,
                           network_params=network_params)
        test_model(**test_params)
Esempio n. 6
0
def train_gray(wdecay,lr,route_iter,folds = [4,9],model_name='vgg_capsule_disfa',epoch_stuff=[30,60],res=False, reconstruct = False, oulu = False, meta_data_dir = 'train_test_files_preprocess_vl',loss_weights = None, exp = False, dropout = 0, gpu_id = 0, aug_more = 'flip', model_to_test = None):


    out_dir_meta = '../experiments_dropout/'+model_name+'_'+str(route_iter)
    num_epochs = epoch_stuff[1]
    if model_to_test is None:
        model_to_test = num_epochs -1

    epoch_start = 0
    if exp:
        dec_after = ['exp',0.96,epoch_stuff[0],1e-6]
    else:
        dec_after = ['step',epoch_stuff[0],0.1]

    lr = lr
    im_resize = 110
    im_size = 96
    save_after = 100

    type_data = 'train_test_files'; n_classes = 8;
    train_pre = os.path.join('../data/ck_96',type_data)
    test_pre =  os.path.join('../data/ck_96',type_data)

    if oulu:
        type_data = 'three_im_no_neutral_just_strong_False'; n_classes = 6;
    criterion = 'margin'
    criterion_str = criterion

    
    init = False
    strs_append_list = ['reconstruct',reconstruct]+aug_more+[num_epochs]+dec_after+lr+[dropout]

    if loss_weights is not None:
        strs_append_list = strs_append_list     +['lossweights']+loss_weights
    strs_append = '_'+'_'.join([str(val) for val in strs_append_list])
    
    if oulu:
        pre_pend = 'oulu_96_'+meta_data_dir+'_'
    else:
        pre_pend = 'ck_96_'+type_data+'_'
    
    lr_p=lr[:]
    for split_num in folds:
        
        if res:
            print 'what to res?'
            raw_input()
        else:
            model_file = None    


        margin_params = None
        
        out_dir_train =  os.path.join(out_dir_meta,pre_pend+str(split_num)+strs_append)
        print out_dir_train
        
        final_model_file = os.path.join(out_dir_train,'model_'+str(num_epochs-1)+'.pt')
        if os.path.exists(final_model_file):
            print 'skipping',final_model_file
            # raw_input()
            continue 
        else:
            print 'not skipping', final_model_file
            # raw_input()
            # continue

        if not oulu:
            train_file = os.path.join(train_pre,'train_'+str(split_num)+'.txt')
            test_file_easy = os.path.join(train_pre,'test_'+str(split_num)+'.txt')
            test_file = os.path.join(test_pre,'test_'+str(split_num)+'.txt')
            mean_file = os.path.join(train_pre,'train_'+str(split_num)+'_mean.png')
            std_file = os.path.join(train_pre,'train_'+str(split_num)+'_std.png')

        else:
            train_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'.txt')
            test_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'test_'+str(split_num)+'.txt')
            mean_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'_mean.png')
            std_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'_std.png')

        mean_im = scipy.misc.imread(mean_file).astype(np.float32)
        std_im = scipy.misc.imread(std_file).astype(np.float32)

        class_weights = util.get_class_weights(util.readLinesFromFile(train_file))


        list_of_to_dos = aug_more
        print list_of_to_dos
        # raw_input()
        # aug_more.split('_')
        # ['flip','rotate','scale_translate', 'pixel_augment']
        
        data_transforms = {}
        if 'hs' in list_of_to_dos:
            print '**********HS!!!!!!!'
            list_transforms = [lambda x: augmenters.hide_and_seek(x)]
            if 'flip' in list_of_to_dos:
                list_transforms.append(lambda x: augmenters.horizontal_flip(x))
            list_transforms = list_transforms+ [transforms.ToTensor(),lambda x: x*255.]
            print list_transforms
            data_transforms['train']= transforms.Compose(list_transforms)
        elif 'none' in list_of_to_dos:
            print 'DOING NOTHING!!!!!!'
            data_transforms['train']= transforms.Compose([
                transforms.ToTensor(),
                lambda x: x*255.
            ])
        else:
            data_transforms['train']= transforms.Compose([
                lambda x: augmenters.augment_image(x,list_of_to_dos,mean_im,std_im,im_size),
                transforms.ToTensor(),
                lambda x: x*255.
            ])
        
        data_transforms['val']= transforms.Compose([
            transforms.ToTensor(),
            lambda x: x*255.
            ])

        print data_transforms['train']
        # raw_input()

        # train_data = dataset.CK_96_Dataset_Just_Mean(train_file, mean_file, data_transforms['train'])
        # test_data = dataset.CK_96_Dataset_Just_Mean(test_file, mean_file, data_transforms['val'])

        print train_file
        print test_file
        print std_file
        print mean_file
        # raw_input()

        train_data = dataset.CK_96_Dataset(train_file, mean_file, std_file, data_transforms['train'])
        test_data = dataset.CK_96_Dataset(test_file, mean_file, std_file, data_transforms['val'])
        
        network_params = dict(n_classes=n_classes,pool_type='max',r=route_iter,init=init,class_weights = class_weights, reconstruct = reconstruct,loss_weights = loss_weights, dropout = dropout)
    
        batch_size = 128
        batch_size_val = 128
    
        util.makedirs(out_dir_train)
        
        train_params = dict(out_dir_train = out_dir_train,
                    train_data = train_data,
                    test_data = test_data,
                    batch_size = batch_size,
                    batch_size_val = batch_size_val,
                    num_epochs = num_epochs,
                    save_after = save_after,
                    disp_after = 1,
                    plot_after = 100,
                    test_after = 1,
                    lr = lr,
                    dec_after = dec_after, 
                    model_name = model_name,
                    criterion = criterion,
                    gpu_id = gpu_id,
                    num_workers = 0,
                    model_file = model_file,
                    epoch_start = epoch_start,
                    margin_params = margin_params,
                    network_params = network_params,
                    weight_decay=wdecay)
        test_params = dict(out_dir_train = out_dir_train,
                    model_num = model_to_test,
                    # num_epochs-1, 
                    train_data = train_data,
                    test_data = test_data,
                    gpu_id = gpu_id,
                    model_name = model_name,
                    batch_size_val = batch_size_val,
                    criterion = criterion,
                    margin_params = margin_params,
                    network_params = network_params)
        

        print train_params
        param_file = os.path.join(out_dir_train,'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k,train_params[k])
            print str_print
            all_lines.append(str_print)
        util.writeFile(param_file,all_lines)


       # if reconstruct:
        train_model_recon(**train_params)
        test_model_recon(**test_params)
        # else:
        #     train_model(**train_params)
        #     test_model(**test_params)


        
    getting_accuracy.print_accuracy(out_dir_meta,pre_pend,strs_append,folds,log='log.txt')
Esempio n. 7
0
def checking_aug(wdecay,lr,route_iter,folds = [4,9],model_name='vgg_capsule_disfa',epoch_stuff=[30,60],res=False, reconstruct = False, oulu = False, meta_data_dir = 'train_test_files_preprocess_vl',loss_weights = None, exp = False, dropout = 0, gpu_id = 0, aug_more = 'flip', model_to_test = None):


    out_dir_meta = '../experiments_dropout/'+model_name+'_'+str(route_iter)
    num_epochs = epoch_stuff[1]
    if model_to_test is None:
        model_to_test = num_epochs -1

    epoch_start = 0
    if exp:
        dec_after = ['exp',0.96,epoch_stuff[0],1e-6]
    else:
        dec_after = ['step',epoch_stuff[0],0.1]

    lr = lr
    im_resize = 110
    im_size = 96
    save_after = 100

    type_data = 'train_test_files'; n_classes = 8;
    train_pre = os.path.join('../data/ck_96',type_data)
    test_pre =  os.path.join('../data/ck_96',type_data)

    if oulu:
        type_data = 'three_im_no_neutral_just_strong_False'; n_classes = 6;
    criterion = 'margin'
    criterion_str = criterion

    
    init = False
    strs_append_list = ['reconstruct',reconstruct]+aug_more+[num_epochs]+dec_after+lr+[dropout]

    if loss_weights is not None:
        strs_append_list = strs_append_list     +['lossweights']+loss_weights
    strs_append = '_'+'_'.join([str(val) for val in strs_append_list])
    
    if oulu:
        pre_pend = 'oulu_96_'+meta_data_dir+'_'
    else:
        pre_pend = 'ck_96_'+type_data+'_'
    
    lr_p=lr[:]
    for split_num in folds:
        
        if res:
            print 'what to res?'
            raw_input()
        else:
            model_file = None    


        margin_params = None
        
        out_dir_train =  os.path.join(out_dir_meta,pre_pend+str(split_num)+strs_append)
        print out_dir_train
        
        final_model_file = os.path.join(out_dir_train,'model_'+str(num_epochs-1)+'.pt')
        if os.path.exists(final_model_file):
            print 'skipping',final_model_file
            # raw_input()
            # continue 
        else:
            print 'not skipping', final_model_file
            # raw_input()
            # continue

        if not oulu:
            train_file = os.path.join(train_pre,'train_'+str(split_num)+'.txt')
            # train_file = os.path.join(train_pre,'test_'+str(split_num)+'.txt')
            test_file_easy = os.path.join(train_pre,'test_'+str(split_num)+'.txt')
            test_file = os.path.join(test_pre,'test_'+str(split_num)+'.txt')
            mean_file = os.path.join(train_pre,'train_'+str(split_num)+'_mean.png')
            std_file = os.path.join(train_pre,'train_'+str(split_num)+'_std.png')

        else:
            train_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'.txt')
            test_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'test_'+str(split_num)+'.txt')
            mean_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'_mean.png')
            std_file = os.path.join('../data/Oulu_CASIA',meta_data_dir, type_data, 'train_'+str(split_num)+'_std.png')

        mean_im = scipy.misc.imread(mean_file).astype(np.float32)
        std_im = scipy.misc.imread(std_file).astype(np.float32)

        class_weights = util.get_class_weights(util.readLinesFromFile(train_file))


        list_of_to_dos = aug_more
        print list_of_to_dos
        # raw_input()
        # aug_more.split('_')
        # ['flip','rotate','scale_translate', 'pixel_augment']
        
        data_transforms = {}
        data_transforms['train']= transforms.Compose([
            # lambda x: augmenters.augment_image(x,list_of_to_dos,mean_im,std_im,im_size),
            lambda x: augmenters.hide_and_seek(x, div_sizes = [9,7,5,3], hide_prob = 0.5,fill_val = 0),
            transforms.ToTensor(),
            lambda x: x*255.
        ])
        data_transforms['val']= transforms.Compose([
            transforms.ToTensor(),
            lambda x: x*255.
            ])

        # train_data = dataset.CK_96_Dataset_Just_Mean(train_file, mean_file, data_transforms['train'])
        # test_data = dataset.CK_96_Dataset_Just_Mean(test_file, mean_file, data_transforms['val'])

        print train_file
        print test_file
        print std_file
        print mean_file
        # raw_input()



        train_data = dataset.CK_96_Dataset(train_file, mean_file, std_file, data_transforms['train'])

        batch_size = 1
        # len(train_data)
        print batch_size
        
        train_dataloader = torch.utils.data.DataLoader(train_data, 
                        batch_size=batch_size,
                        shuffle=False)
        
        out_dir_im = '../experiments_dropout/checking_aug/im_flip_check'
        util.makedirs(out_dir_im)

        for num_iter_train,batch in enumerate(train_dataloader):
            if num_iter_train%100==0:
                print num_iter_train

            ims = batch['image'].cpu().numpy()
            # print ims.shape
            # print np.mean(ims)
            # print np.std(ims)
            # print np.min(ims),np.max(ims)
            # print np.min(train_data.mean),np.max(train_data.mean)
            # print np.min(train_data.std),np.max(train_data.std)
            # continue
            labels = batch['label']

            # ims = ims*train_data.std[np.newaxis,np.newaxis,:,:]
            # ims = ims+train_data.mean[np.newaxis,np.newaxis,:,:]

            for num_curr, im_curr in enumerate(ims):
                if num_curr%100==0:
                    print num_curr
                im_curr = im_curr.squeeze()
                # print np.min(im_curr),np.max(im_curr)

                # print im_curr.shape
                out_file_curr = os.path.join(out_dir_im, '_'.join([str(val) for val in [num_iter_train,num_curr]])+'.png')
                # print out_file_curr
                # print np.min(im_curr),np.max(im_curr)
                # raw_input()
                # cv2.imwrite(out_file_curr,im_curr)
                scipy.misc.imsave(out_file_curr,im_curr)
                # break
            # break


            # print ims.shape
            # print train_data.mean.shape
            # print train_data.std.shape

        visualize.writeHTMLForFolder(out_dir_im,'.png')


    
        print 'done'