Esempio n. 1
0
def obj_nlopt_inspect(x, grad, para):
    #retrieve r and k
    A = para[0]
    B = para[1]
    E = para[2]
    F = para[3]
    num_m = int(x.size / 2)
    r = x[0:num_m]
    k = x[num_m:]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D, scenario, k)

    C = hp.C(A, B, r)
    U = hp.U_scrap(C, USY, miuY, sigmaY_Taylor, k, Sp, Sc)

    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v,
                                       scenario, k)
        grad_r[i] = hp.dU_dri_scrap(USY, miuY, sigmaY_Taylor, C, k, i,
                                    dsigmaY_dri_v, dCi_dri_v, Sp, Sc)
        dsigmaY_dki = hp.dsigmaY_dki(D, sigmaX, r, i, k)
        grad_k[i] = hp.dU_dki_scrap(USY, miuY, sigmaY_Taylor, k, i, C, Sc,
                                    dsigmaY_dki, Sp)
    grad_combine = np.concatenate((grad_r, grad_k), axis=0)

    if grad.size > 0:
        grad[:] = grad_combine  #Make sure to assign value using [:]
    #print(U)
    #print(lamada)
    return U
Esempio n. 2
0
def obj_nlopt_inspect_fixk(x, grad, para):
    A = para[0]
    B = para[1]
    E = para[2]
    F = para[3]
    r = x[0:m]
    k = 3.0 * np.ones_like(r)
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D, scenario, k)
    #Compute Unit Cost
    C = hp.C(A, B, r)
    U = hp.U_scrap(C, USY, miuY, sigmaY_Taylor, k, Sp, Sc)

    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v,
                                       scenario, k)
        grad_r[i] = hp.dU_dri_scrap(USY, miuY, sigmaY_Taylor, C, k, i,
                                    dsigmaY_dri_v, dCi_dri_v, Sp, Sc)

    if grad.size > 0:
        grad[:] = grad_r  #Make sure to assign value using [:]
    #print(U)
    #print(lamada)

    return U
Esempio n. 3
0
def obj_nlopt_inspect(x, grad):
    #retrieve r and k
    num_m = int(x.size / 2)
    r = x[0:num_m]
    k = x[num_m:]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    sigmaY_Taylor = lamada * sigmaY_Taylor
    #Compute Unit Cost
    C = hp.C(A, B, r)
    U = hp.U_scrap(C, USY, miuY, sigmaY_Taylor, k)

    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    sigmaY_Taylor = lamada * sigmaY_Taylor
    #Compute Unit Cost
    C = hp.C(A, B, r)
    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v)
        grad_r[i] = hp.dU_dri_scrap(USY, miuY, sigmaY_Taylor, C, k, i, lamada,
                                    dsigmaY_dri_v, dCi_dri_v)

        grad_k[i] = hp.dU_dki_scrap(USY, miuY, sigmaY_Taylor, k[i], C[i])
    grad_combine = np.concatenate((grad_r, grad_k), axis=0)
    if grad.size > 0:
        grad[:] = grad_combine
    return U
Esempio n. 4
0
def obj_nlopt_inspect(x, grad):
    #retrieve r and k
    num_m = int(x.size / 2)
    r = x[0:num_m]
    k = x[num_m:]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    #Update Lambda by simulation
    global lamada
    #lamada = hp.updateLambda(D,sigmaX,k,miu,NSample)
    sigmaY_Taylor = lamada * sigmaY_Taylor
    #Compute Unit Cost
    C = hp.C(A, B, r)
    U = hp.U_scrap(C, USY, miuY, sigmaY_Taylor, k, Sp, Sc)

    #Compute Unit Cost
    C = hp.C(A, B, r)
    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v)
        grad_r[i] = hp.dU_dri_scrap(USY, miuY, sigmaY_Taylor, C, k, i, lamada,
                                    dsigmaY_dri_v, dCi_dri_v, Sp, Sc)

        grad_k[i] = hp.dU_dki_scrap(USY, miuY, sigmaY_Taylor, k[i], C[i],
                                    Sc[i])
    grad_combine = np.concatenate((grad_r, grad_k), axis=0)
    if grad.size > 0:
        grad[:] = grad_combine  #Make sure to assign value using [:]
    print(U)
    print(lamada)
    return U
Esempio n. 5
0
def obj_grad_scipy_noinspect(x):
    #retrieve r and k
    grad = np.zeros(m)
    r = x[0:m]
    k = x[m:]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    #Compute Unit Cost
    C = hp.C(A, B, r)
    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v)
        grad_r[i] = hp.dU_dri_noscrap(USY, miuY, sigmaY_Taylor, C, k, i,
                                      dsigmaY_dri_v, dCi_dri_v)
    grad[:] = grad_r
    return grad
Esempio n. 6
0
def obj_nlopt_noinspect(x, grad):
    #retrieve r as the optimization variable x. (k will not be optimized, so just use const)
    r = x[0:x.size]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    #Compute Unit Cost
    C = hp.C(A, B, r)
    U = hp.U_noscrap(C, USY, miuY, sigmaY_Taylor)

    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v)
        grad_r[i] = hp.dU_dri_noscrap(USY, miuY, sigmaY_Taylor, C, k, i,
                                      dsigmaY_dri_v, dCi_dri_v)
    if grad.size > 0:
        grad[:] = grad_r
    return U
Esempio n. 7
0
def obj_grad_scipy_inspect(x):
    #retrieve r and k
    grad = np.zeros_like(x)
    r = x[0:m]
    k = x[m:]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    sigmaY_Taylor = lamada * sigmaY_Taylor
    #Compute Unit Cost
    C = hp.C(A, B, r)
    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v)
        grad_r[i] = hp.dU_dri_scrap(USY, miuY, sigmaY_Taylor, C, k, i, lamada,
                                    dsigmaY_dri_v, dCi_dri_v)

        grad_k[i] = hp.dU_dki_scrap(USY, miuY, sigmaY_Taylor, k[i], C[i])
    grad_combine = np.concatenate((grad_r, grad_k), axis=0)
    grad[:] = grad_combine
    return grad
Esempio n. 8
0
def obj_nlopt_noinspect(x, grad, para):
    #retrieve r as the optimization variable x. (k will not be optimized, so just use const)
    A = para[0]
    B = para[1]
    E = para[2]
    F = para[3]
    r = x[0:m]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D, scenario, k)
    #Compute Unit Cost
    C = hp.C(A, B, r)
    U = hp.U_noscrap(C, USY, miuY, sigmaY_Taylor, Sp)

    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v,
                                       scenario, k)
        grad_r[i] = hp.dU_dri_noscrap(USY, miuY, sigmaY_Taylor, C, k, i,
                                      dsigmaY_dri_v, dCi_dri_v, Sp)
    if grad.size > 0:
        grad[:] = grad_r  #Make sure to assign value using [:]
    #print(U)
    return U
Esempio n. 9
0
    sigmaX_plus = hp.sigma(E, F, ri_add_epsilon)
    sigmaX_minus = hp.sigma(E, F, ri_minus_epsilon)
    C_plus = hp.C(A, B, ri_add_epsilon)
    C_minus = hp.C(A, B, ri_minus_epsilon)
    sigmaY_Taylor_plus = hp.sigmaY(sigmaX_plus, D, scenario, k)
    sigmaY_Taylor_minus = hp.sigmaY(sigmaX_minus, D, scenario, k)

    if scenario == 1:  #NO INSPECT
        #gradient computed by numerical estimation
        grad_numerical_r[i] = (hp.U_noscrap(
            C_plus, USY, miuY, sigmaY_Taylor_plus, Sp) - hp.U_noscrap(
                C_minus, USY, miuY, sigmaY_Taylor_minus, Sp)) / (2 * epsilon)
        print('Numerical_No scrap_' + 'dr' + str(i), '=', grad_numerical_r[i])
        #gradient computed by equation
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v,
                                       scenario, k)
        grad_equation_r[i] = hp.dU_dri_noscrap(USY, miuY, sigmaY_Taylor, C, k,
                                               i, dsigmaY_dri_v, dCi_dri_v, Sp)
        print('Equation_No scrap_' + 'dr' + str(i), '=', grad_equation_r[i])

    elif scenario == 2:  #Inspection FIX k
        #Varify dr
        #gradient computed by numerical estimation
        grad_numerical_r[i] = (
            hp.U_scrap(C_plus, USY, miuY, sigmaY_Taylor_plus, k, Sp, Sc) -
            hp.U_scrap(C_minus, USY, miuY, sigmaY_Taylor_minus, k, Sp, Sc)) / (
                2 * epsilon)
        print('Numerical_scrap_' + 'dr' + str(i), '=', grad_numerical_r[i])
        #gradient computed by equation