Esempio n. 1
0
 def __get_eigenface_file_from_image(cls, model_file, image_file, size):
     model = helpers.load(model_file)
     im = helpers.get_nparray_from_img(image_file, size)
     eigenface = model.transform([im])
     eigenface_file = helpers.get_temp_filename()
     helpers.dump(eigenface, eigenface_file, compress_level=3)
     return eigenface_file
Esempio n. 2
0
 def __get_eigenface_file_from_image(cls, model_file, image_file, size):
     model = helpers.load(model_file)
     im = helpers.get_nparray_from_img(image_file, size)
     eigenface = model.transform([im])
     eigenface_file = helpers.get_temp_filename()
     helpers.dump(eigenface, eigenface_file, compress_level=3)
     return eigenface_file
Esempio n. 3
0
  def save (self, iteration):

    # initialize history
    self.history [iteration] = self.values

    # dump history
    helpers.delete (self.coefficients_file)
    for iteration in range (iteration + 1):
      helpers.dump (self.history [iteration], '%f', 'coefficients', self.coefficients_file, iteration)
Esempio n. 4
0
def main(argv):
    """
    Command line example:
    python builddataset.py -i 'img/dir' -o 'out/dir' -w <img width> -h <img height> -n <number of components for the model>
    """
    indir = '.\dataset'
    outdir = '.\output'
    w = 320
    h = 243
    nc = 150

    try:
        opts, args = getopt.getopt(
            argv, 'i:o:w:h:n:',
            ['img_dir=', 'out_dir=', 'width=', 'height=', 'n_components='])
    except getopt.GetoptError:
        usage()
        sys.exit(2)

    for opt, arg in opts:
        if opt in ('-h', '--height'):
            h = int(arg)
        elif opt in ('-w', '--width'):
            w = int(arg)
        elif opt in ('-o', '--out_dir'):
            outdir = arg
        elif opt in ('-i', '--img_dir'):
            indir = arg
        elif opt in ('-n', '--n_components'):
            nc = int(arg)
        else:
            usage()
            sys.exit(2)

    files = [join(indir, f) for f in listdir(indir) if isfile(join(indir, f))]
    data = list()
    data_labels = list()
    for file in files:
        data.append(helpers.get_nparray_from_img(file, (w, h)))
        data_labels.append(
            basename(file))  # temporary while we do not have more info

    model = helpers.get_model(n_components=nc, data=data)
    helpers.dump(model, join(outdir, MODEL_FILE), compress_level=3)

    with open(join(outdir, DATASET_FILE), 'wb') as f:
        for index, eigenface in enumerate(model.transform(data)):
            f.write('"{}","{}","{}"\n'.format(index, data_labels[index],
                                              ' '.join(map(str, eigenface))))

    print ''
    print 'Created {} and {} in directory {}.'.format(MODEL_FILE, DATASET_FILE,
                                                      outdir)
    print 'PCA Explained Variance Ratio: {}'.format(
        sum(model.explained_variance_ratio_))
    print 'Obs.: if this number is not satisfactory try increasing the number of components'
    print ''
Esempio n. 5
0
    def save(self, iteration):

        origins = ['measured', 'infered']

        # initialize history
        if len(self.history) == 0:
            for origin in origins:
                self.history['mean_fine_' + origin] = {}
                self.history['mean_coarse_' + origin] = {}
                self.history['variance_fine_' + origin] = {}
                self.history['variance_coarse_' + origin] = {}
                self.history['covariance_' + origin] = {}
                self.history['correlation_' + origin] = {}
                self.history['coefficients_' + origin] = {}
                self.history['mean_diff_' + origin] = {}
                self.history['variance_diff_' + origin] = {}
                self.history['mean_diff_opt_' + origin] = {}
                self.history['variance_diff_opt_' + origin] = {}

        # append history
        for origin in origins:
            self.history['mean_fine_' +
                         origin][iteration] = self.mean[self.FINE][origin]
            self.history['mean_coarse_' +
                         origin][iteration] = self.mean[self.COARSE][origin]
            self.history['variance_fine_' +
                         origin][iteration] = self.variance[self.FINE][origin]
            self.history['variance_coarse_' +
                         origin][iteration] = self.variance[
                             self.COARSE][origin]
            self.history['covariance_' +
                         origin][iteration] = self.covariance[origin]
            self.history['correlation_' +
                         origin][iteration] = self.correlation[origin]
            self.history['coefficients_' +
                         origin][iteration] = self.coefficients.values
            self.history['mean_diff_' +
                         origin][iteration] = self.mean_diff[origin]
            self.history['variance_diff_' +
                         origin][iteration] = self.variance_diff[origin]
            self.history['mean_diff_opt_' +
                         origin][iteration] = self.mean_diff_opt[origin]
            self.history['variance_diff_opt_' +
                         origin][iteration] = self.variance_diff_opt[origin]

        # dump history
        helpers.delete(self.indicators_file)
        for variable in self.history:
            for i in range(iteration + 1):
                helpers.dump(self.history[variable][i], '%f', variable,
                             self.indicators_file, i)
Esempio n. 6
0
def main(argv):
    """
    Command line example:
    python builddataset.py -i 'img/dir' -o 'out/dir' -w <img width> -h <img height> -n <number of components for the model>
    """
    indir = '.\dataset'
    outdir = '.\output'
    w = 320
    h = 243
    nc = 150

    try:
        opts, args = getopt.getopt(argv, 'i:o:w:h:n:', ['img_dir=', 'out_dir=', 'width=', 'height=', 'n_components='])
    except getopt.GetoptError:
        usage()
        sys.exit(2)

    for opt, arg in opts:
        if opt in ('-h', '--height'):
            h = int(arg)
        elif opt in ('-w', '--width'):
            w = int(arg)
        elif opt in ('-o', '--out_dir'):
            outdir = arg
        elif opt in ('-i', '--img_dir'):
            indir = arg
        elif opt in ('-n', '--n_components'):
            nc = int(arg)
        else:
            usage()
            sys.exit(2)

    files = [join(indir, f) for f in listdir(indir) if isfile(join(indir, f))]
    data = list()
    data_labels = list()
    for file in files:
        data.append(helpers.get_nparray_from_img(file, (w, h)))
        data_labels.append(basename(file)) # temporary while we do not have more info

    model = helpers.get_model(n_components=nc, data=data)
    helpers.dump(model, join(outdir, MODEL_FILE), compress_level=3)

    with open(join(outdir, DATASET_FILE), 'wb') as f:
        for index, eigenface in enumerate(model.transform(data)):
            f.write('"{}","{}","{}"\n'.format(index, data_labels[index], ' '.join(map(str, eigenface))))

    print ''
    print 'Created {} and {} in directory {}.'.format(MODEL_FILE, DATASET_FILE, outdir)
    print 'PCA Explained Variance Ratio: {}'.format(sum(model.explained_variance_ratio_))
    print 'Obs.: if this number is not satisfactory try increasing the number of components'
    print ''
Esempio n. 7
0
def init(rootPassword=None, username=None, password=None):
    try:
        LoadRepo()
        print 'Already a repository'
        exit(0)
    except Exception, e:
        if os.path.exists(os.path.join(globals.ROOT, '.gaea')):
            p = Popen(['rm', '-rf', os.path.join(globals.ROOT, '.gaea')])
            p.wait()
        os.makedirs(os.path.join(globals.ROOT, '.gaea', 'snaps'))
        os.makedirs(os.path.join(globals.ROOT, '.gaea', 'peers'))
        dataMap = {'HEAD':'0', 'latestId':'0', 'author': '', 'email': '', 'remote':{} }
        helpers.dump(dataMap)
        initPeerDirec(rootPassword, username, password)
        print "new repo created"
Esempio n. 8
0
def overview(req):
    
    posts = h.postings(req)
    
    for post in posts.latest():
        print post.date(), post.title()
    
    return h.dump(req)
Esempio n. 9
0
def SKL_gen(params, methodname, uploadfile):
	TrainDF, _ = dataset_gen(datatype=0)
	if DROP_NEGATIVE_W:
		TrainDF = TrainDF[TrainDF["weightModified"] > 0]

	print((TrainDF["weightModified"] < 0).any())
	
	train_data = np.array(TrainDF.iloc[:,:11], dtype="float64")
	labels = np.array(TrainDF.iloc[:,14], dtype="float64")
	sample_weight = np.array(TrainDF.iloc[:,12], dtype="float64")

	if methodname == "SKL_BDT":
		classifier = GradientBoostingClassifier(n_estimators=int(params[0]),
										  		max_depth=float(params[1]),
										  		learning_rate=float(params[2]),
										  		random_state=1,
										  		verbose=1)
	
	elif methodname == "SKL_MLP":
		classifier = MLPClassifier(random_state=1, verbose=True, early_stopping=True, n_iter_no_change=10, tol=0.001,
							   	   solver=params[0],
							   	   activation=params[1],
							   	   batch_size=int(params[2]),
							   	   learning_rate_init=float(params[3]),
							   	   alpha=float(params[4]),
							   	   hidden_layer_sizes=[int(el) for el in params[5].split(":")],)

	else:
		raise ValueError(f"No method name {methodname}")

	t = time.time()
	if methodname == "SKL_BDT":
		if USE_W:
			classifier.fit(train_data, labels, sample_weight=sample_weight)
		else:
			classifier.fit(train_data, labels)
	else:
		classifier.fit(train_data, labels)

	dump(methodname, uploadfile, "time:"+str(round(time.time() - t))+"\n")

	with open(f"models/{methodname}/{uploadfile}.pickle", "wb") as file:
		pickle.dump(classifier, file)
Esempio n. 10
0
    def save(self, iteration):

        # initialize history
        if len(self.history) == 0:
            self.history['computed'] = {}
            self.history['additional'] = {}
            self.history['combined'] = {}

        # append history
        self.history['computed'][iteration] = self.counts.computed
        self.history['additional'][iteration] = self.counts.additional
        self.history['combined'][iteration] = self.counts.combined

        # dump history
        helpers.delete(self.samples_file)
        for i in range(iteration + 1):
            for entry in self.history:
                helpers.dump(self.history[entry][i], '%d', entry,
                             self.samples_file, i)
Esempio n. 11
0
def process_data(data, dumpname=DATANAME):
    """
    Clear and format the data
    """
    print("Processing data...")
    names, units, recipes = data
    db = []
    len_recipes = len(recipes)
    for i, row in enumerate(recipes):
        if i%100 == 0: print(f"Processing data... {i}/{len_recipes}")
        for word in row.split(" "):
            word = word.strip().strip(string.punctuation + " ")
            if len(word) > 0:
                if word in names or check_contains(word, names):
                    db.append("INGREDIENT")
                else:
                    db.append(word.lower())
        db.append("\n")
    hp.dump(db, DATANAME)
    print(f"Processed data! Saved as {DATANAME}\n")
    return db
Esempio n. 12
0
def pullAll():
    peerInfo = globals.PEERINFO['peers']
    abort = False
    print peerInfo.keys()
    for index,ip in enumerate(peerInfo.keys()):
        if 'pull' in globals.REPOINFO.keys():
            if index <= globals.REPOINFO['pull']:
                print "continuing " + str(index)
                continue

        #try:
        globals.REPOINFO['pull'] = index
        helpers.dump(globals.REPOINFO)
        pull(ip, peerInfo[ip]['path'], peerInfo[ip]['username'], peerInfo[ip]['password'])
        # except Exception,e:
        #     print e
        #     abort = True;
        #     break;
    if not abort:
        print "deleting"
        del globals.REPOINFO['pull']
        helpers.dump(globals.REPOINFO)
    pass
Esempio n. 13
0
    def save(self, iteration):

        # init history
        if len(self.history) == 0:
            self.history['relative_error'] = {}
            self.history['total_relative_error'] = {}
            self.history['total_error'] = {}

        # append history
        self.history['relative_error'][
            iteration] = self.relative_error if self.available else float(
                'NaN')
        self.history['total_relative_error'][
            iteration] = self.total_relative_error if self.available else float(
                'NaN')
        self.history['total_error'][
            iteration] = self.total_error if self.available else float('NaN')

        # dump history
        helpers.delete(self.errors_file)
        for variable in self.history:
            for i in range(iteration + 1):
                helpers.dump(self.history[variable][i], '%f', variable,
                             self.errors_file, i)
Esempio n. 14
0
    def do_dump(self, arg=None):
        '''Dump object.'''
        if arg == 'all':
            for obj in _DUMP_OBJECTS[1:]:
                print(f'ACTIVE {obj.upper()}:')
                self.do_dump(obj)
            return
        if arg == 'selection':
            self.do_dump_selection()

        if hasattr(self, arg):
            dump(getattr(self, arg))
        elif hasattr(self.sdcard, arg):
            dump(getattr(self.sdcard, arg))
        elif hasattr(self.session, arg):
            dump(getattr(self.session, arg))
        else:
            logger.warning(f'Object {arg} unknown.')
Esempio n. 15
0
def setRemote(name, address):
    globals.REPOINFO['remote'].update({name: address})
    helpers.dump(globals.REPOINFO)
Esempio n. 16
0
def setEmail(email):
    globals.REPOINFO['email'] = email
    helpers.dump(globals.REPOINFO)
Esempio n. 17
0
def setAuthor(author):
    globals.REPOINFO['author'] = author
    helpers.dump(globals.REPOINFO)
Esempio n. 18
0
def TMVA_gen(params, methodname, uploadfile):
	fout = root.TFile(f"TMVA_outputs/{methodname}/{uploadfile}.root", "RECREATE")
	# if methodname == "TMVA_MLP":
	# 	PARAMETERS.append("Transformations=G")
	# 	# PARAMETERS.append("Transformations=I;D;P;G,D")

	factory = root.TMVA.Factory(f"TMVAClassification_{methodname}_{uploadfile}", fout, ":".join(PARAMETERS))

	dataloader = root.TMVA.DataLoader("models/dataloader")

	SFile = root.TFile("source/"+SFILENAME)
	STree = SFile.Get(TREENAME)
	dataloader.AddSignalTree(STree)

	BFile1 = root.TFile("source/"+"ZgQCD.root")
	BFile2 = root.TFile("source/"+"ttgamma.root")
	BFile3 = root.TFile("source/"+"WenuDataDriven.root")
	BFile4 = root.TFile("source/"+"Wgam.root")
	BFile5 = root.TFile("source/"+"WgamEWK.root")

	BTree1 = BFile1.Get(TREENAME)
	BTree2 = BFile2.Get(TREENAME)
	BTree3 = BFile3.Get(TREENAME)
	BTree4 = BFile4.Get(TREENAME)
	BTree5 = BFile5.Get(TREENAME)

	dataloader.AddBackgroundTree(BTree1)
	dataloader.AddBackgroundTree(BTree2)
	dataloader.AddBackgroundTree(BTree3)
	dataloader.AddBackgroundTree(BTree4)
	dataloader.AddBackgroundTree(BTree5)

	dataloader.AddVariable("mJJ","F")
	dataloader.AddVariable("deltaYJJ","F")
	dataloader.AddVariable("metPt","F")
	dataloader.AddVariable("ptBalance","F")
	dataloader.AddVariable("subleadJetEta","F")
	dataloader.AddVariable("leadJetPt","F")
	dataloader.AddVariable("photonEta","F")
	dataloader.AddVariable("ptBalanceRed","F")
	dataloader.AddVariable("nJets","F")
	dataloader.AddVariable("sinDeltaPhiJJOver2","F")
	dataloader.AddVariable("deltaYJPh","F")
	dataloader.AddSpectator("weightModified", "F")

	if USE_W:
		dataloader.SetSignalWeightExpression("weightModified")
		dataloader.SetBackgroundWeightExpression("weightModified")

	if DROP_NEGATIVE_W:
		cut = root.TCut("(nJets > 1)&&(nLeptons == 0)&&(weightModified > 0)")
	else:
		cut = root.TCut("(nJets > 1)&&(nLeptons == 0)")

	dataloader.PrepareTrainingAndTestTree(cut, ":".join(["nTrain_Signal=0",
														 "nTrain_Background=0",
														 "SplitMode=Random",
														 "NormMode=NumEvents",
														 "!V"]))


	model = root.TMVA.Types.kBDT if methodname == "TMVA_BDT" else root.TMVA.Types.kMLP

	if methodname == "TMVA_MLP":
		settings = ["!H", "!V", "VarTransform=G", "NCycles=400", "BPMode=batch",
					"TestRate=5", "!UseRegulator", "NeuronType=sigmoid",
					"ConvergenceImprove=0.0025", "ConvergenceTests=5",
					f"LearningRate={params[0]}",
					f"HiddenLayers={params[1]}",
					f"BatchSize={params[2]}",]
	
	elif methodname == "TMVA_BDT":
		settings = ["!H", "!V", "MinNodeSize=5", "BoostType=Grad",
	     			f"NTrees={params[0]}",
	     			f"nCuts={params[1]}",
	     			f"MaxDepth={params[2]}",
	     			f"shrinkage={params[3]}",]
	
	else:
		raise ValueError(f"No method name {methodname}")

	method = factory.BookMethod(dataloader, model, methodname, ":".join(settings))

	t = time.time()
	factory.TrainAllMethods()
	factory.TestAllMethods()
	factory.EvaluateAllMethods()
	fout.Close()
	dump(methodname, uploadfile, "time:"+str(round(time.time() - t))+"\n")