Esempio n. 1
0
def main():
    if clean_dir:
        clean_outdir(outdir)

    x0 = generate_vf_landmarks(magnification,
                               ecc0,
                               ecc1,
                               n_prototypes,
                               vf='full',
                               filename=full_filename('vf', outdir))
    b0 = generate_V2_boundary_retinotopy_for_DM(boundary_len,
                                                map_h,
                                                filename=full_filename(
                                                    'boundary', outdir))

    y = initialize_map(map_h,
                       map_w,
                       x0,
                       filename=full_filename('init', outdir),
                       random_seed=random_seed)

    optimize(x0,
             b0,
             b1,
             b2,
             map_h,
             map_w,
             y,
             k0=k0,
             kr=kr,
             eta0=eta0,
             outdir=outdir,
             save_interval=save_interval,
             n=n_iterations)
Esempio n. 2
0
def save_map(sess,
             y,
             b1,
             b2,
             i,
             outdir="",
             save_interval=0,
             quiet=False,
             suffix=''):
    if (outdir != "") and save_interval > 0:
        if i % save_interval == 0:
            filename = "y-{b1:4.3f}-{b2:4.3f}-{i}".format(b1=b1,
                                                          b2=b2,
                                                          i=str(i).zfill(5))
            zz = sess.run(y)

            if (not quiet):
                print("saving {filename}".format(filename=filename))

            np.savetxt(full_filename(filename,
                                     outdir,
                                     ext=".data",
                                     suffix=suffix),
                       np.array(zz),
                       fmt="%f",
                       delimiter=",")
def main(rseed, outputdir):
    if clean_dir:
        clean_outdir(outputdir)

    x0 = generate_vf_landmarks(magnification,
                               ecc0,
                               ecc1,
                               n_prototypes,
                               vf='full',
                               filename=full_filename('vf', outputdir))
    b0 = generate_V2_boundary_retinotopy(boundary_len,
                                         map_h,
                                         branch='vd',
                                         filename=full_filename(
                                             'boundary', outputdir),
                                         tilt=10.0)

    y = initialize_map(map_h,
                       map_w,
                       x0,
                       filename=full_filename('init', outdir),
                       random_seed=rseed)

    # loop through b1 and b2
    b1s = [0.03 * 1.6**i for i in range(0, 8)]
    b2s = [0.03 * 1.6**i for i in range(0, 8)]
    print("b1:", b1s)
    print("b2:", b2s)
    for b1 in b1s:
        for b2 in b2s:
            print("b1 = %10.4f \t b2 = %10.4f" % (b1, b2))
            optimize(
                x0,
                b0,
                b1,
                b2,
                map_h,
                map_w,
                y,
                k0=k0,
                kr=kr,
                eta0=eta0,
                outdir=outputdir,
                save_interval=0,  # disable saving intermediate maps
                n=n_iterations,
                report_iterations=False,
                log_iterations=False)
Esempio n. 4
0
def train(opt,
          total_cost,
          partial_costs,
          tf_placeholders,
          y,
          b1,
          b2,
          outdir="",
          save_interval=0,
          n=1000,
          k0=30.0,
          kr=0.005,
          quiet_save=False,
          report_iterations=True,
          log_iterations=True,
          logfile='log',
          suffix='',
          yx_gauss=None):
    """
    b1:              weights for the smoothness term
    b2:              weights for the congruency term
    n:               number of iterations
    k0:              initial annealing parameter
    kr:              reduction of the annealing parameter at each iteration
    outdir:          where to save the results.
    save_intervals:  save map every several iterations. if set to 0, saving is disabled
    """

    yx_cost = partial_costs[0]
    reg1 = partial_costs[1]
    reg2 = partial_costs[2]
    beta1 = tf_placeholders[0]
    beta2 = tf_placeholders[1]
    kappa = tf_placeholders[2]

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # save initial map
    #      always save the initial map (by setting save_interval to 1)
    save_map(sess,
             y,
             b1,
             b2,
             0,
             outdir,
             save_interval=1,
             quiet=quiet_save,
             suffix=suffix)

    k = k0
    for i in range(1, n + 1):
        # itertaively optimize the total cost function
        sess.run(opt, {kappa: k, beta1: b1, beta2: b2})

        report_and_log(partial_costs,
                       tf_placeholders,
                       i,
                       k,
                       b1,
                       b2,
                       sess,
                       reportP=report_iterations,
                       logP=log_iterations,
                       logfile=full_filename(logfile, outdir, suffix=suffix))

        if i > 0:
            save_map(sess,
                     y,
                     b1,
                     b2,
                     i,
                     outdir,
                     save_interval,
                     quiet=quiet_save,
                     suffix=suffix)

        k = k - k * kr

    # save the final result
    #      set save_interval to 1, so that the final result is saved even if intermediate saving is disabled by save_interval=0
    save_map(sess,
             y,
             b1,
             b2,
             i,
             outdir,
             save_interval=1,
             quiet=quiet_save,
             suffix=suffix)

    report_and_log(partial_costs,
                   tf_placeholders,
                   i,
                   k,
                   b1,
                   b2,
                   sess,
                   reportP=False,
                   logP=True,
                   logfile=full_filename(logfile, outdir, suffix=suffix))