Esempio n. 1
0
    def __init__(self, parent=None):
        super(Window, self).__init__(parent)

        plt.style.use("ggplot")

        # Field Canvas
        self.canvas = FigureCanvas(plt.figure())
        self.canvas.axes = self.canvas.figure.add_subplot(111)

        plt.axis("equal")
        plt.xlabel("X position (m)")
        plt.ylabel("Y position (m)")
        plt.xlim(-1, in2m(360) + 1)
        plt.ylim(-1, in2m(180) + 1)

        (self.line, ) = self.canvas.axes.plot(
            [in2m(30)], [in2m(30)], marker="o",
            color="cornflowerblue")  # Start pos
        self.lb = LineBuilder(self.line)
        self.toolbar = NavigationToolbar(self.canvas, self)

        self.canvas.setFocusPolicy(QtCore.Qt.ClickFocus)
        self.canvas.setFocus()

        # Obstacles List
        obstaclesList = QListWidget()
        for obstacle in PATH_OBSTACLES:
            obstaclesList.addItem(QListWidgetItem(obstacle))
        obstaclesList.itemClicked.connect(self.add_obstacles)

        # Save Button
        saveButton = QPushButton()
        saveButton.setText("Save to JSON")
        saveButton.clicked.connect(self.write_json)

        # Layout
        main_layout = QHBoxLayout()

        plot_layout = QVBoxLayout()
        plot_layout.addWidget(self.toolbar)
        plot_layout.addWidget(self.canvas)

        settings_layout = QVBoxLayout()
        settings_layout.addWidget(obstaclesList)
        settings_layout.addWidget(saveButton)

        main_layout.addLayout(settings_layout)
        main_layout.addLayout(plot_layout)

        self.setLayout(main_layout)

        self.canvas.draw()
Esempio n. 2
0
    def __init__(self):
        # Geometry
        self.WIDTH = in2m(34)  # m
        self.LENGTH = in2m(39)  # m
        self.TRACK_WIDTH = 0.7269198037390904  # m
        self.WHEEL_DIA = in2m(6)  # m
        self.GEOMETRY = [
            [
                (self.LENGTH / 2, self.WIDTH / 2),
                (self.LENGTH / 2, -self.WIDTH / 2),
            ],  # Front
            [
                (-self.LENGTH / 2, self.WIDTH / 2),
                (-self.LENGTH / 2, -self.WIDTH / 2),
            ],  # Back
            [
                (self.LENGTH / 2, self.WIDTH / 2),
                (-self.LENGTH / 2, self.WIDTH / 2),
            ],  # Left
            [
                (self.LENGTH / 2, -self.WIDTH / 2),
                (-self.LENGTH / 2, -self.WIDTH / 2),
            ],  # Right
        ]
        self.AXIS_SIZE = self.WIDTH / 4
        self.OBSTACLE_BUFFER = DEFAULT_OBSTACLE_BUFFER

        # Mass / Inertia
        self.MU = DEFAULT_MU
        self.MASS = 50.0  # kg
        self.J = (
            self.MASS * (self.LENGTH ** 2 + self.WIDTH ** 2)
        ) / 12.0  # Moment of inertia

        # Motors
        self.MOTORS_PER_SIDE = 2
        self.MOTOR_MAX_TORQUE = DEFAULT_MAX_TORQUE
        self.MOTOR_MAX_RPM = DEFAULT_MAX_RPM
        self.DRIVE_RATIO = 9.5625  # 9.5625:1
        self.WHEEL_40A_FORCE = (
            self.MOTORS_PER_SIDE
            * self.MOTOR_MAX_TORQUE
            * self.DRIVE_RATIO
            / (self.WHEEL_DIA / 2)
        )
def plan(robot=Robot(), plot=False):
    N = 200  # Number of control intervals

    OBSTACLES = create_obstacles("barrel-racing")
    FINISH_LINE_BUFFER = 0.1

    # Setup Optimization
    opti = ca.Opti()

    # State variables
    X = opti.variable(len(StateVars), N + 1)
    xpos = X[StateVars.xIdx.value, :]  # X position
    ypos = X[StateVars.yIdx.value, :]  # Y-position
    theta = X[StateVars.thetaIdx.value, :]  # Theta
    vl = X[StateVars.vlIdx.value, :]  # Left wheel velocity
    vr = X[StateVars.vrIdx.value, :]  # Right wheel velocity
    al = X[StateVars.alIdx.value, :]  # Left wheel acceleration
    ar = X[StateVars.arIdx.value, :]  # Right wheel acceleration

    # Control variables
    U = opti.variable(len(ControlVars), N)
    jl = U[ControlVars.jlIdx.value, :]  # Left wheel jerk
    jr = U[ControlVars.jrIdx.value, :]  # Right wheel jerk

    # Total time variable
    T = opti.variable()
    dt = T / N  # length of one control interval

    # Minimize time
    opti.minimize(T)

    # Apply dynamic constriants
    for k in range(N):
        x_next = X[:, k] + robot.dynamics_model(X[:, k], U[:, k]) * dt
        opti.subject_to(X[:, k + 1] == x_next)

    # Wheel constraints
    robot.apply_wheel_constraints(opti, vl, vr, al, ar, jl, jr)

    # Boundary conditions
    # Start
    opti.subject_to(xpos[0] == in2m(60) - robot.LENGTH / 2)
    opti.subject_to(ypos[0] == in2m(90))
    opti.subject_to(theta[0] == 0)
    opti.subject_to(vl[0] == 0)
    opti.subject_to(vr[0] == 0)
    opti.subject_to(al[0] == 0)
    opti.subject_to(ar[0] == 0)
    opti.subject_to(jl[0] == 0)
    opti.subject_to(jr[0] == 0)

    # End
    robot.apply_finish_line_constraints(
        opti,
        xpos[-1],
        ypos[-1],
        theta[-1],
        (
            (in2m(60) - FINISH_LINE_BUFFER, in2m(60)),
            (in2m(60) - FINISH_LINE_BUFFER, in2m(120)),
        ),
        "left",
    )

    # Obstacles
    robot.apply_obstacle_constraints(opti, xpos, ypos, theta, OBSTACLES)

    # Time constraints
    opti.subject_to(T >= 0)

    # Compute initial guess from init traj
    x_init, y_init, theta_init = load_init_json("init_traj/barrel_racing.json",
                                                (in2m(30), in2m(90), 0.0), N)

    # Initial guess
    opti.set_initial(xpos, x_init)
    opti.set_initial(ypos, y_init)
    opti.set_initial(theta, theta_init)
    opti.set_initial(vl, 0)
    opti.set_initial(vr, 0)
    opti.set_initial(al, 0)
    opti.set_initial(ar, 0)
    opti.set_initial(jl, 0)
    opti.set_initial(jr, 0)
    opti.set_initial(T, 10)

    if plot:
        # Plot initialization
        plot_traj(
            "Initial Trajectory",
            x_init,
            y_init,
            theta_init,
            OBSTACLES,
            robot.GEOMETRY,
            robot.AXIS_SIZE,
        )

    # Solve non-linear program
    opti.solver("ipopt", {}, {"mu_init": 1e-3})  # set numerical backend
    sol = opti.solve()

    if plot:
        # Plot result without wheel force limits
        plot_traj(
            "Before Wheel Force Limits",
            sol.value(xpos),
            sol.value(ypos),
            sol.value(theta),
            OBSTACLES,
            robot.GEOMETRY,
            robot.AXIS_SIZE,
        )

    # Solve the problem again, but this time with wheel force & friction limit constraints
    robot.apply_wheel_force_constraints(opti, al, ar)
    robot.apply_wheel_friction_constraints(opti, vl, vr, al, ar)

    # Copy over X, U, and T to initialize
    opti.set_initial(X, sol.value(X))
    opti.set_initial(U, sol.value(U))
    opti.set_initial(T, sol.value(T))
    sol = opti.solve()

    times = np.linspace(0, sol.value(T), N)

    if plot:
        # Plot final result
        plot_traj(
            "Final Result",
            sol.value(xpos),
            sol.value(ypos),
            sol.value(theta),
            OBSTACLES,
            robot.GEOMETRY,
            robot.AXIS_SIZE,
        )

        plt.figure()
        plot_wheel_vel_accel_jerk(
            times,
            sol.value(vl)[:-1],
            sol.value(vr)[:-1],
            sol.value(al)[:-1],
            sol.value(ar)[:-1],
            sol.value(jl),
            sol.value(jr),
        )

        lon_fl, lon_fr = robot.get_longitudinal_wheel_forces(al, ar)
        lat_f = robot.get_lateral_wheel_force(vl, vr)

        plt.figure()
        plot_wheel_forces(
            times,
            sol.value(lon_fl)[:-1],
            sol.value(lon_fr)[:-1],
            sol.value(lat_f)[:-1],
        )

        plt.figure()
        plot_total_force(
            times,
            np.sqrt(sol.value(lon_fl)**2 + sol.value(lat_f)**2)[:-1],
            np.sqrt(sol.value(lon_fr)**2 + sol.value(lat_f)**2)[:-1],
        )

        interp_time = 0.02  # seconds

        interp_x = interp_state_vector(times, sol.value(xpos), interp_time)
        interp_y = interp_state_vector(times, sol.value(ypos), interp_time)
        interp_theta = interp_state_vector(times, sol.value(theta),
                                           interp_time)

        plot_traj(
            "Interp",
            interp_x,
            interp_y,
            interp_theta,
            OBSTACLES,
            robot.GEOMETRY,
            robot.AXIS_SIZE,
            save_png=True,
        )

        anim = anim_traj(
            "Final Result",
            interp_x,
            interp_y,
            interp_theta,
            OBSTACLES,
            robot.GEOMETRY,
            robot.AXIS_SIZE,
            20,  # milliseconds
            save_gif=False,
        )

        plt.show()

    print(f"Trajectory time: {sol.value(T)} seconds")