def dispatch(requestBody, eventsData): helpers.init() funcDict = { 'billPayment': billPayment.payBill, 'getBiller_billPayment': billPayment.getBiller_billPayment, 'getAccount_billPayment': billPayment.getAccount_billPayment, 'getAccount_fundsTransfer': fundsTransfer.getAccount_fundsTransfer, 'getAmount_billPayment': billPayment.getAmount_billPayment, 'getAmount_fundsTransfer': fundsTransfer.getAmount_fundsTransfer, 'confirm_fundsTransfer': fundsTransfer.confirm_fundsTransfer, 'confirm_billPayment': billPayment.confirm_billPayment, 'fundsTransfer': fundsTransfer.transferFunds, 'getRecipient_fundsTransfer': fundsTransfer.getRecipient_fundsTransfer, 'getBalance': getBalance.getBalance } if requestBody is None: return None requestBody = json.loads(requestBody) intent = validate.try_ex( lambda: requestBody['queryResult']['intent']['displayName']) result = ( validate.try_ex(lambda: funcDict[intent](requestBody, eventsData))) if result is None: raise Exception('Intent with name ' + intent + ' not supported') return result
def main(): h.init() global cfg cfg = h.cfg # configure and start the actual app global routing application = webapp.WSGIApplication(routing, debug=True) util.run_wsgi_app(application)
def def_first(): """Game for matching word to definiton""" content = helpers.init() print('\nYou can exit at anytime by entering \'menu\'.\n') random.shuffle(content) count = len(content) correct = 0 incorrect = 0 for word in content: print('\n{}. {}'.format(operator.indexOf(content, word) + 1, word['definition'])) res = input('\nWhat word does this definition belong to?\n\t=>').lower() if res == word['key'].lower(): count -= 1 correct += 1 if count > 0: print('\nGood Job! next word!') elif res == 'menu': main.menu() else: incorrect += 1 count -= 1 if count > 1: print('\nIncorrect. Next word.') print('\nYou got {} correct and {} incorrect'.format(correct, incorrect)) helpers.callback(def_first)
def scrambled(): """Unscramble the word""" content = helpers.init() print('\nYou can exit at anytime by entering \'menu\'.\n') random.shuffle(content) count = len(content) correct = 0 incorrect = 0 i = 0 shuffled = [] for word in content: scrmbld = helpers.scramble_string(word['key']) shuffled.append(scrmbld) for scr in shuffled: res = input('\n{}. {}.\n\t=>'.format(i + 1, scr)).lower() if res == content[i]['key'].lower(): count -= 1 correct += 1 if count > 0: print('\nGood Job! next word!') elif res == 'menu': main.menu() else: incorrect += 1 count -= 1 if count > 1: print('\nIncorrect. Next word.') i += 1 print('\nYou got {} correct and {} incorrect'.format(correct, incorrect)) helpers.callback(scrambled)
def def_first(): """Game for matching word to definiton""" content = helpers.init() print("\nYou can exit at anytime by entering 'exit'.\n") random.shuffle(content) count = len(content) correct = 0 incorrect = 0 for word in content: print("\n{}. {}".format(operator.indexOf(content, word) + 1, word["definition"])) res = input("\nWhat word does this definition belong to?\n\t=>").lower() if res == word["key"].lower(): count -= 1 correct += 1 if count > 0: print("\nGood Job! next word!") elif res == "exit": return else: incorrect += 1 count -= 1 if count > 1: print("\nIncorrect. Next word.") print("\nYou got {} correct and {} incorrect".format(correct, incorrect)) helpers.callback(def_first)
def scrambled(): """Unscramble the word""" content = helpers.init() print("\nYou can exit at anytime by entering 'exit'.\n") random.shuffle(content) count = len(content) correct = 0 incorrect = 0 i = 0 shuffled = [] for word in content: scrmbld = helpers.scramble_string(word["key"]) shuffled.append(scrmbld) for scr in shuffled: res = input("\n{}. {}.\n\t=>".format(i + 1, scr)).lower() if res == content[i]["key"].lower(): count -= 1 correct += 1 if count > 0: print("\nGood Job! next word!") elif res == "exit": return else: incorrect += 1 count -= 1 if count > 1: print("\nIncorrect. Next word.") i += 1 print("\nYou got {} correct and {} incorrect".format(correct, incorrect)) helpers.callback(scrambled)
def get_events_breakdown_data(col, player_name, start, end): pipeline = helpers.init(player_name, start, end) pipeline[1]["$project"]["element_type"] = 1 projection = [{"$group": {"_id": None, "goals": {"$push": "$fixture_history.goals"}, "assists": {"$push": "$fixture_history.assists"}, "clean_sheets": {"$push": "$fixture_history.clean_sheet"}, "points": {"$push": "$fixture_history.points"}, "gameweeks": {"$push": "$fixture_history.gameweek"}, "player_type": {"$first": "$element_type"}}}] pipeline.extend(projection) breakdown_object = col.aggregate(pipeline).next() goal_points = get_goal_points(breakdown_object["goals"], breakdown_object["player_type"]) assist_points = map(lambda x: 3*x, breakdown_object["assists"]) others_points = (np.array(breakdown_object["points"]) - np.array(goal_points) - np.array(assist_points)) data = [{"goals": pairs_to_lists(zip(breakdown_object["gameweeks"],goal_points))}, {"assists": pairs_to_lists(zip(breakdown_object["gameweeks"],assist_points))}] if breakdown_object["player_type"] == 3 or breakdown_object["player_type"] == 4: # Forwards/midfields data.append({"others": pairs_to_lists(zip(breakdown_object["gameweeks"],others_points.tolist()))}) else: # Defenders/GKs cs_points = map(lambda x: 4*x, breakdown_object["clean_sheets"]) others_points -= np.array(cs_points) data.extend([{"cleanSheets": pairs_to_lists(zip(breakdown_object["gameweeks"],cs_points))}, {"others": pairs_to_lists(zip(breakdown_object["gameweeks"],others_points.tolist()))}]) return data
def get_consistency_data(col, player_name, start, end): pipeline = helpers.init(player_name, start, end) projection = [{"$group": {"_id": None, attr: {"$push": "$fixture_history."+attribute.INTERNAL_ATTR_MAP[attr]}}}] pipeline.extend(projection) attr_vals = np.array(col.aggregate(pipeline).next()[attr]) data = [attr_vals.min(), np.percentile(attr_vals, 25, interpolation="midpoint"), np.median(attr_vals), np.percentile(attr_vals, 75, interpolation="midpoint"), attr_vals.max()] return [data]
def get_over_time_data(col, player_name, start, end): pipeline = helpers.init(player_name, start, end) projection = [{"$group": {"_id": None, "gameweeks": {"$push": "$fixture_history.gameweek"}, attr: {"$push": "$fixture_history."+attribute.INTERNAL_ATTR_MAP[attr]}, "results": {"$push": "$fixture_history.opponent_result"}}}] pipeline.extend(projection) data = col.aggregate(pipeline).next() data = helpers.pairs_to_lists(zip(data["gameweeks"], data[attr])) return map(lambda p: [p[0],p[1]/10.0], data)
def get_home_vs_away_data(col, player_name, start, end, attr): pipeline = helpers.init(player_name, start, end) projection = [{"$group": {"_id": "$fixture_history.ground", "y": {"$sum": "$fixture_history."+INTERNAL_ATTR_MAP[attr]}}}] pipeline.extend(projection) data = [d for d in col.aggregate(pipeline)] for d in data: d["_id"] = "Home" if d["_id"] == "H" else "Away" d["name"] = d.pop("_id") return data
def dispatch(requestBody, eventsData): helpers.init() funcDict = { 'booking': booking.bookingcom, 'getarrival_booking': booking.getarrival_booking, 'getdeparture_booking': booking.getdeparture_booking, 'getadult_booking': booking.getadult_booking, 'getchild_booking': booking.getchild_booking, 'Confirm_booking': booking.Confirm_booking } if requestBody is None: return None requestBody = json.loads(requestBody) intent = validate.try_ex( lambda: requestBody['queryResult']['intent']['displayName']) result = ( validate.try_ex(lambda: funcDict[intent](requestBody, eventsData))) if result is None: raise Exception('Intent with name ' + intent + ' not supported') return result
def get_cumulative_total_data(col, player_name, start, end, attr): pipeline = helpers.init(player_name, start, end) projection = [{"$group": {"_id": None, "gameweeks": {"$push": "$fixture_history.gameweek"}, attr: {"$push": "$fixture_history."+INTERNAL_ATTR_MAP[attr]}, "results": {"$push": "$fixture_history.opponent_result"}}}] pipeline.extend(projection) data = col.aggregate(pipeline).next() cum_sums = np.cumsum(data[attr]) data = map(list, zip(data["gameweeks"], cum_sums)) return data
def get_over_time_data(col, player_name, start, end, attr): pipeline = helpers.init(player_name, start, end) projection = [{"$group": {"_id": None, "gameweeks": {"$push": "$fixture_history.gameweek"}, attr: {"$push": "$fixture_history."+INTERNAL_ATTR_MAP[attr]}, "results": {"$push": "$fixture_history.opponent_result"}}}] pipeline.extend(projection) data = col.aggregate(pipeline).next() res_length = len(data["gameweeks"]) data = [{"x": data["gameweeks"][i], "y": data[attr][i], "name": data["results"][i]} for i in xrange(res_length)] return data
def __init__(self, argv): # Authenticate and construct service. self.service, self.arguments = init( argv, 'calendar', 'v3', __doc__, __file__, parents=[self._create_argument_parser()], scope='https://www.googleapis.com/auth/calendar.readonly') # user info self.user = None self.title = None with open("user.json", 'r', encoding='utf-8') as fp: user_data = json.load(fp) self.user = user_data["user"] self.title = user_data["title"] # projects database self.db = CalendarDb(self.arguments.database) self.projects = dict() for p in self.db.get_projects(): self.projects[p.key] = p # start and end date if self.arguments.start_date is None and \ self.arguments.end_date is None and \ self.arguments.period is None: self.arguments.period = "last-month" self.start_date = date.today().replace(day=1) self.end_date = date.today() + timedelta(days=1) if self.arguments.period is not None: if self.arguments.period == "last-month": self.end_date = self.start_date self.start_date = (self.end_date - timedelta(days=1)).replace(day=1) else: raise ValueError("Unknown period: %s" % self.arguments.period) if self.arguments.start_date is not None or \ self.arguments.end_date is not None: raise ValueError( "You cannot combine --period and explicit date") else: if self.arguments.start_date is not None: y, m, d, *r = humanfriendly.parse_date( self.arguments.start_date) self.start_date = date(y, m, d) if self.arguments.end_date is not None: y, m, d, *r = humanfriendly.parse_date(self.arguments.end_date) self.end_date = date(y, m, d)
def scrambled(): """Unscramble the word""" content = helpers.init() print('\nYou can exit at anytime by entering \'menu\'.\n') random.shuffle(content) count = len(content) correct = 0 incorrect = 0 i = 0 shuffled = [] for word in content: to_scramble = list(word['key'].lower().strip()) random.shuffle(to_scramble) shuffled.append(to_scramble) for scr in shuffled: res = input('\n{}. {}.\n\t=>'.format(i + 1, ''.join(scr))).lower() if res == content[i]['key'].lower(): count -= 1 correct += 1 if count > 0: print('\nGood Job! next word!') elif res == 'menu': main.menu() else: incorrect += 1 count -= 1 if count > 1: print('\nIncorrect. Next word.') i += 1 print('\nYou got {} correct and {} incorrect'.format(correct, incorrect)) helpers.callback(scrambled)
import win32gui from pywinauto.findwindows import find_window from pywinauto.win32functions import SetForegroundWindow import ImageGrab import cv2 import helpers import numpy as np import random thing_id = 'bob30' helpers.init() def get_rect(hwnd): rect = win32gui.GetWindowRect(hwnd) return rect def screen_grab(): box = (x1, y1, x2, y2) im = ImageGrab.grab(box) return im window = find_window(title="bob_robot_sim") SetForegroundWindow(window) x1, y1, x2, y2 = get_rect(window) class RandomNoise:
import helpers helpers.init(globals()) from structures.Possession import PossessionManager PossessionManager().persist()
import torchvision import torch.nn as nn from torch.autograd import Variable import torch import numpy as np import dataset import helpers import models from config import * assert (file_name == 'vae-gan') writer, save_dir = helpers.init(gpu, file_name, experiment_name) use_ganloss = True # TODO can I use that here? use_vaeloss = True use_instancenoise = False iter_decay = 1000. # iterations after which instance noise is at 1/e # models # TODO to one model? netD = models.Discriminator().cuda() netG = models.Generator().cuda() netE = models.Encoder().cuda() # weight initialization netD.apply(models.init_weights) # xavier init netE.apply(models.init_weights) # xavier init netG.apply(models.init_weights) # xavier init criterion = nn.BCELoss().cuda() optD = torch.optim.Adam(netD.parameters(), lr=lr) optG = torch.optim.Adam(netG.parameters(), lr=lr)
This module uses K-Means to initialize mean and cov. Transition matrix A and distribution for the first component is initialized randomly. All estimated parameters starts with an underscore then follows the same name of the parameters as we used previously. """ # K-Means to estimate _mean and _cov _mean, assign = KMeans(X, numComponent) _cov = helpers.estimateCov(X, _mean, assign) # show clustering result plt.figure() plt.scatter(X[:, 0], X[:, 1], c = assign) plt.scatter(_mean[:, 0], _mean[:, 1], s = 40, color = 'y', marker = 'D') plt.title("Clustering Result by K-Means") #%% Train HMM # initialize parameters _A, _pi = helpers.init(numComponent) for nIter in range(1, 21): # E Step gamma, epsilon = helpers.E_Step(X, _mean, _cov, _A, _pi) # M Step _mean, _cov, _A, _pi = helpers.M_Step(X, gamma, epsilon) # plot intermediate result if(nIter % 5 == 0): plt.figure() plt.scatter(X[:, 0], X[:, 1], c = gamma) plt.scatter(_mean[:, 0], _mean[:, 1], s = 40, color = 'y', marker = 'D') plt.title("Result return by HMM after " + str(nIter) + " iterations") plt.show()
def __init__(self,input_size,output_size): super(Linear,self).__init__() self.param('weights', init(input_size,output_size)) self.param('bias', np.zeros(output_size))
def run_multi_engine_query(config): """ Based on the specified named query, collect all engines, and run the query against all engines and put the output in a single .csv file. High-level logic: 1. Create a Portal object instance 2. Get the list of Engines from the Portal 3. Create the output file For each Engine: 4. Run the query against that engine 5. Append the results to the output file Arguments: config: Initialized MultiEngineQueryConfig object """ func_name = inspect.currentframe().f_code.co_name # Create the logger, and enable Class-level debugging logger = init(config) start_time = time.time() if config.verbose: logger.info('{} - Starting'.format(func_name)) # 1. Create a Portal object instance portal = PortalAppliance.create(config) # 2. Get the list of Connected Engines from the Portal portal_start_time = time.time() engine_list = portal.get_engine_list(config.engine_port, only_connected=True) portal_end_time = time.time() msg = 'Retrieved {0} connected Engine{1} from Portal "{2}" in {3}.'.format( len(engine_list), 's' if len(engine_list) != 1 else '', portal.name, timer(portal_start_time, portal_end_time)) config.add_to_email(msg) print(msg) if config.verbose: logger.info("{0} - {1}".format(func_name, msg)) # If there are no Enigne Appliances, just note the fact and exit. if len(engine_list) == 0: msg = 'No Engine Appliances are connected or available, so exiting.' print(msg) config.add_to_email(msg) return finish_process(func_name, logger, config, start_time, finished=True) # For each query for query in config.queries: query_start_time = time.time() if config.verbose: msg = 'Processing Query "{0}".'.format(query.name) print(msg) config.add_to_email(msg) logger.info('{} - {}'.format(func_name, msg)) # 3. Create the output file output_fname, output_created = create_output_file( logger, config, query) if not output_created: msg = 'Unable to create the output file ("{0}") for Query "{1}", so exiting.'.format( output_fname, query.name) print(msg) config.add_to_email(msg) return finish_process(func_name, logger, config, start_time, finished=True) # For each Engine first_engine = True for engine in engine_list: eng_name = '[{0} ({1})]'.format(engine.name, engine.hostname_fqdn) # 4. Run the query engine_objects = run_query_on_engine(logger, config, engine, query) msg = '{0} Retrieved {1} Object{2} to save from this Engine for Query "{3}".'.format( eng_name, len(engine_objects), 's' if len(engine_objects) != 1 else '', query.name) config.add_to_email(msg) print(msg) if config.debug_engine: logger.debug('{0} - {1}'.format(func_name, msg)) # 5. Save the query results to the output file if len(engine_objects) > 0: if first_engine: field_names = engine_objects[0].keys() written_ok = write_to_output_file(logger, config, query, output_fname, engine_objects, field_names, first_engine) first_engine = False elif config.debug_engine: logger.debug( '{0} - Skipping write of output file for Engine "{1}", no rows were returned for Query "{2}".' .format(func_name, eng_name, query.name)) query_end_time = time.time() if config.verbose: msg = 'Completed collecting and writing results for "{0}" to "{1}" in {2}.'.format( query.name, output_fname, timer(query_start_time, query_end_time)) logger.info('{0} - {1}'.format(func_name, msg)) print(msg) return finish_process(func_name, logger, config, start_time)