Esempio n. 1
0
    def __call__(self, epoch):
        """ Saves the training state.

        Args:
            epoch (int): Epoch number.
        """
        if self._model:
            ms_path_new = \
                hlp.jn(self._path_dir, 'model_params_ep{}.h5'.format(epoch))
            self.save_model_params(self._model, ms_path_new)

            if self._verbose:
                print('Saved model params in {}'.format(ms_path_new))

            if self._ms_path and self._ms_path != ms_path_new:
                os.remove(self._ms_path)
            self._ms_path = ms_path_new

        if self._opt:
            os_path_new = \
                hlp.jn(self._path_dir, 'optim_params_ep{}.pkl'.format(epoch))
            self.save_optim_params(self._opt, os_path_new)

            if self._verbose:
                print('Saved optimizer params in {}'.format(os_path_new))

            if self._os_path:
                os.remove(self._os_path)
            self._os_path = os_path_new
    def get_file_list(path_root, seqs, exts=None):
        """ Gets the list of paths to files contained in dirs listed in `seqs`.
        The paths are relative w.r.t. the `path_root`.

        Args:
            path_root (str): Path to root dir containing sequences (directories)
                of data samples.
            seqs (lsit of str): Names of sequences (dirs) to load.
            exts (list of str): Supported file name extensions.

        Returns:
            list of str: List of paths to files.
        """
        return [
            hlp.jn(s, f) for s in seqs
            for f in hlp.ls(hlp.jn(path_root, s), exts=exts)
        ]
    def __getitem__(self, idx):
        d = np.load(hlp.jn(self._path_root, self._files[idx]))[self._key].\
            astype(self._dtype)

        if self._transform is not None:
            d = self._transform(d)

        return d
def process_sequence(obj):
    # Get list of paths in obj. category in AtlasNet.
    pth_files_an = jn(pth_root_an, obj, 'ply')
    files = ls(pth_files_an, exts='txt')

    # Peocess files.
    for f in files:
        # Extract file name.
        fn_base = f.split('.')[0]

        # Load .obj mesh from ShapeNet.
        pth_f_sn = jn(
            pth_root_sn, obj, fn_base, 'models', 'model_normalized.obj')
        assert os.path.exists(pth_f_sn)
        verts, faces = load_obj(pth_f_sn)

        # Load tf and apply.
        pth_f_an = jn(pth_files_an, f)
        T, s = load_tf(pth_f_an)
        verts = (verts - T) / s

        # Compute area.
        area = mesh_area(verts, faces)

        # Write area to the file.
        with open(pth_f_an, 'r') as fobj:
            txt = fobj.read()
            assert len(txt.splitlines()) == 2
            has_nl = txt.endswith('\n')

        with open(pth_f_an, 'a') as fobj:
            fobj.write('{}{:.6f}'.format(('\n', '')[has_nl], area))

        with num_samples_done.get_lock():
            num_samples_done.value += 1

    with finished_seqs.get_lock():
        finished_seqs.value += 1
Esempio n. 5
0
                    default='./data')
parser.add_argument('--resume',
                    help='Resume training from the given path',
                    default=False)
args = parser.parse_args()

args.resume = False

# Load the config file, prepare paths.
conf = helpers.load_conf(args.conf)

# Model type, color mode.
model_type = 'atlasnet_orig'

# Prepare TB writers.
writer_tr = SummaryWriter(helpers.jn(args.output, 'tr'))
writer_va = SummaryWriter(helpers.jn(args.output, 'va'))

# Build a model.
model = AtlasNetReimplEncImg(
    M=conf['M'],
    code=conf['code'],
    num_patches=conf['num_patches'],
    normalize_cw=conf['normalize_cw'],
    freeze_encoder=conf['enc_freeze'],
    enc_load_weights=conf['enc_weights'],
    dec_activ_fns=conf['dec_activ_fns'],
    dec_use_tanh=conf['dec_use_tanh'],
    dec_batch_norm=conf['dec_batch_norm'],
    loss_scaled_isometry=conf['loss_scaled_isometry'],
    loss_patch_areas=conf['loss_patch_area'],  # zhantao 
Esempio n. 6
0
    def __init__(self, rootimg, rootpc, path_category_file,
                 class_choice='chair', train=True, npoints=2500, balanced=False,
                 gen_view=False, SVR=False, idx=0, load_area=False):
        super(ShapeNet, self).__init__()

        self.balanced = balanced
        self.train = train
        self.rootimg = rootimg
        self.rootpc = rootpc
        self.npoints = npoints
        self.datapath = []
        self.catfile = path_category_file
        self.cat = {}
        self.meta = {}
        self.SVR = SVR
        self.gen_view = gen_view
        self.idx = idx
        self._load_area = load_area
        self._zero = torch.tensor(0., dtype=torch.float32)

        with open(self.catfile, 'r') as f:
            for line in f:
                ls = line.strip().split()
                self.cat[ls[0]] = ls[1]
        if class_choice is not None:
            self.cat = {k: v for k, v in self.cat.items()
                        if k in class_choice}
        print(self.cat)
        empty = []
        for item in self.cat:
            dir_img = os.path.join(self.rootimg, self.cat[item])
            fns_img = sorted(os.listdir(dir_img))

            try:
                dir_point = os.path.join(self.rootpc, self.cat[item], 'ply')
                fns_pc = sorted(os.listdir(dir_point))
            except:
                fns_pc = []
            fns = [val for val in fns_img if val + '.points.ply' in fns_pc]
            print('category ', self.cat[item], 'files ' + str(len(fns)),
                  len(fns) / float(len(fns_img)), "%"),
            if train:
                fns = fns[:int(len(fns) * 0.8)]
            else:
                fns = fns[int(len(fns) * 0.8):]

            if len(fns) != 0:
                self.meta[item] = []
                for fn in fns:
                    objpath = jn(
                        '/cvlabdata2/cvlab/datasets_jan/shapenet/'
                        'ShapeNetCore.v2', self.cat[item], fn,
                        'models/model_normalized.obj')
                    self.meta[item].append(
                        (os.path.join(dir_img, fn, 'rendering'),
                         os.path.join(dir_point, fn + '.points.ply'),
                         os.path.join(dir_point, fn + '.points.ply2.txt'),
                         item, objpath, fn))
            else:
                empty.append(item)
        for item in empty:
            del self.cat[item]
        self.idx2cat = {}
        self.size = {}
        i = 0
        for item in self.cat:
            self.idx2cat[i] = item
            self.size[i] = len(self.meta[item])
            i = i + 1
            for fn in self.meta[item]:
                self.datapath.append(fn)

        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])

        self.transforms = transforms.Compose([
            transforms.Resize(size=224, interpolation=2),
            transforms.ToTensor(),
            # normalize,
        ])

        # RandomResizedCrop or RandomCrop
        self.dataAugmentation = transforms.Compose([
            transforms.RandomCrop(127),
            transforms.RandomHorizontalFlip(),
        ])
        self.validating = transforms.Compose([
            transforms.CenterCrop(127),
        ])

        self.perCatValueMeter = {}
        for item in self.cat:
            self.perCatValueMeter[item] = AverageValueMeter()
        self.perCatValueMeter_metro = {}
        for item in self.cat:
            self.perCatValueMeter_metro[item] = AverageValueMeter()
        self.transformsb = transforms.Compose([
            transforms.Resize(size=224, interpolation=2),
        ])
    def __init__(self,
                 rootimg,
                 rootpc,
                 path_category_file,
                 class_choice='chair',
                 train=True,
                 test=False,
                 npoints=2500,
                 gen_view=False,
                 SVR=False,
                 idx=0,
                 load_area=False):
        super(ShapeNet, self).__init__()
        self.train = train
        self.test = test
        self.rootimg = rootimg
        self.rootpc = rootpc
        self.npoints = npoints
        self.datapath = []
        self.catfile = path_category_file
        self.cat = {}
        self.meta = {}
        self.SVR = SVR
        self.gen_view = gen_view
        self.idx = idx
        self._load_area = load_area
        self._zero = torch.tensor(0., dtype=torch.float32)

        # Find all category names in the dataset.
        with open(self.catfile, 'r') as f:
            for line in f:
                ls = line.strip().split()
                self.cat[ls[0]] = ls[1]
        # Keep only selected object categories.
        if class_choice is not None:
            self.cat = {k: v for k, v in self.cat.items() if k in class_choice}
        print(self.cat)

        empty = []
        for item in self.cat:
            # Get image file names.
            dir_img = os.path.join(self.rootimg, self.cat[item])
            fns_img = sorted(os.listdir(dir_img))

            # Get pts file names.
            try:
                dir_point = os.path.join(self.rootpc, self.cat[item], 'ply')
                fns_pc = sorted(os.listdir(dir_point))
            except:
                fns_pc = []

            # Select only those file names present both in imgs and pts dirs.
            fns = [val for val in fns_img if val + '.points.ply' in fns_pc]
            print('category ', self.cat[item], 'files ' + str(len(fns)),
                  len(fns) / float(len(fns_img)), "%"),

            # Select train/valid/test subset.
            if train:
                # the first 80% data
                print('construct training set')
                fns = fns[:int(len(fns) * 0.8)]
            elif test:
                # test last 10% data
                print('construct testing set')
                fns = fns[int(len(fns) * 0.9):]
            else:
                # the 80% - 90% data
                print('construct validation set')
                fns = fns[int(len(fns) * 0.8):int(len(fns) * 0.9)]

            if len(fns) != 0:
                self.meta[item] = []
                for fn in fns:
                    objpath = jn(
                        '/cvlabdata2/cvlab/datasets_jan/shapenet/'
                        'ShapeNetCore.v2', self.cat[item], fn,
                        'models/model_normalized.obj')
                    self.meta[item].append(
                        (os.path.join(dir_img, fn, 'rendering'),
                         os.path.join(dir_point, fn + '.points.ply'),
                         os.path.join(dir_point, fn + '.points.ply2.txt'),
                         item, objpath, fn))
            else:
                empty.append(item)
        for item in empty:
            del self.cat[item]
        self.idx2cat = {}
        self.size = {}
        i = 0
        for item in self.cat:
            self.idx2cat[i] = item
            self.size[i] = len(self.meta[item])
            i = i + 1
            for fn in self.meta[item]:
                self.datapath.append(fn)

        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])

        self.transforms = transforms.Compose([
            transforms.Resize(size=224, interpolation=2),
            transforms.ToTensor(),
            # normalize,
        ])

        # RandomResizedCrop or RandomCrop
        self.dataAugmentation = transforms.Compose([
            transforms.RandomCrop(127),
            transforms.RandomHorizontalFlip(),
        ])
        self.validating = transforms.Compose([
            transforms.CenterCrop(127),
        ])
 def __getitem__(self, idx):
     return hlp.load_img(hlp.jn(self._path_root_imgs, self._files[idx]))
gpu = torch.cuda.is_available()

# Parse arguments.
parser = argparse.ArgumentParser()
parser.add_argument('--conf', help='Path to the main config file of the model.',
                    default='config.yaml')
parser.add_argument('--output', help='Path to the output directory for storing '
                                     'weights and tensorboard data.',
                    default='config.yaml')
args = parser.parse_args()

# Load the config file, prepare paths.
conf = helpers.load_conf(args.conf)

# Prepare TB writers.
writer_tr = SummaryWriter(helpers.jn(args.output, 'tr'))
writer_va = SummaryWriter(helpers.jn(args.output, 'va'))

# Build a model.
model = AtlasNetReimpl(
    M=conf['M'], code=conf['code'], num_patches=conf['num_patches'],
    normalize_cw=conf['normalize_cw'],
    freeze_encoder=conf['enc_freeze'],
    enc_load_weights=conf['enc_weights'],
    dec_activ_fns=conf['dec_activ_fns'],
    dec_use_tanh=conf['dec_use_tanh'],
    dec_batch_norm=conf['dec_batch_norm'],
    loss_scaled_isometry=conf['loss_scaled_isometry'],
    alpha_scaled_isometry=conf['alpha_scaled_isometry'],
    alphas_sciso=conf['alphas_sciso'], gpu=gpu)
                    help='Path to the main config file of the model.',
                    default='conf_texless_defsurf.yaml')
parser.add_argument('--output',
                    help='Path to the output directory for storing '
                    'weights and tensorboard data.',
                    default='./data')
parser.add_argument('--resume',
                    help='Resume training from the given path',
                    default=False)
args = parser.parse_args()

# Load the config file, prepare paths.
conf = helpers.load_conf(args.conf)

# Prepare TB writers.
writer_tr = SummaryWriter(helpers.jn(args.output, 'tr'))
writer_va = SummaryWriter(helpers.jn(args.output, 'va'))

# Build a model.
model = AtlasNetReimplEncImg(
    M=conf['M'],
    code=conf['code'],
    num_patches=conf['num_patches'],
    normalize_cw=conf['normalize_cw'],
    freeze_encoder=conf['enc_freeze'],
    enc_load_weights=conf['enc_weights'],
    dec_activ_fns=conf['dec_activ_fns'],
    dec_use_tanh=conf['dec_use_tanh'],
    dec_batch_norm=conf['dec_batch_norm'],
    loss_scaled_isometry=conf['loss_scaled_isometry'],
    loss_patch_areas=conf['loss_patch_area'],  # zhantao 
def get_total_num_samples():
    num_total = 0
    seqs = lsd(pth_root_an)
    for s in seqs:
        num_total += len(ls(jn(pth_root_an, s), exts='txt'))
    return num_total