Esempio n. 1
0
Observation: for a given fraction, the number of steps before reducing is the number of steps before we hit the next smallest factor.

We always reduce to 1 / another number

and so we always eliminate all of the smallest factors.

So f(n) = largest_prime_factor(n + 1) - 1.

'''

from helpers import prime_factorizations, isPrimeMR, sieve

limit = 2 * 10**6

primes = sieve(limit + 100)
pfs = prime_factorizations(limit + 100)


def get_pf(n):
    if n < len(pfs):
        return pfs[n]
    else:
        if isPrimeMR(n):
            return {n: 1}
        ans = {}
        for p in primes:

            if n < len(pfs) or isPrimeMR(n):
                break
            power = 0
            while n % p == 0:
Esempio n. 2
0
from helpers import prime_factorizations, sieve
from operator import mul

from sys import setrecursionlimit

# bold call but you gotta do what you gotta do to not rewrite your shitty recursive solution into one using a stack :^)^)^)^)^)^)^)^)^)
setrecursionlimit(10**4)

N = 120000

prime_factorizations = prime_factorizations(N)
primes = sieve(N)

# print prime_factorizations


def rad(n):
    return reduce(mul, prime_factorizations[n].keys())


def abc_hit(a, b, c):
    rad_factors = set(prime_factorizations[c].keys())
    b_factors = set(prime_factorizations[b].keys())
    a_factors = set(prime_factorizations[a].keys())
    rad_factors = rad_factors.union(b_factors)
    rad_factors = rad_factors.union(a_factors)
    return reduce(
        mul, rad_factors) < c and a_factors.intersection(b_factors) == set()


def possible_nums(prime_candidates, max_num, min_index):
Esempio n. 3
0
from helpers import sieve, prime_factorizations, isPrimeMR

primes = sieve(10**8)
setprimes = set(primes)
pfs = prime_factorizations(10**6)


def get_divisors(pf):
	if len(pf) == 0:
		yield 1
		return
	(prime, power) = pf.popitem()
	for p in range(power + 1):
		for divisor in get_divisors(pf):
			yield prime**p * divisor 
	pf[prime] = power

def get_pf(n):
	if n < len(pfs):
		return pfs[n]
	else:
		if isPrimeMR(n):
			return {n : 1}
		ans = {}
		for p in primes:

			if n < len(pfs) or n in setprimes:
				break
			power = 0
			while n % p == 0:
Esempio n. 4
0
We always reduce to 1 / another number

and so we always eliminate all of the smallest factors.

So f(n) = largest_prime_factor(n + 1) - 1.

'''

from helpers import prime_factorizations, isPrimeMR, sieve

limit = 2 * 10**6


primes = sieve(limit + 100)
pfs = prime_factorizations(limit + 100)

def get_pf(n):
	if n < len(pfs):
		return pfs[n]
	else:
		if isPrimeMR(n):
			return {n : 1}
		ans = {}
		for p in primes:

			if n < len(pfs) or isPrimeMR(n):
				break
			power = 0
			while n % p == 0:
				power += 1
Esempio n. 5
0
from helpers import sieve, prime_factorizations, isPrimeMR

primes = sieve(10**8)
setprimes = set(primes)
pfs = prime_factorizations(10**6)


def get_divisors(pf):
    if len(pf) == 0:
        yield 1
        return
    (prime, power) = pf.popitem()
    for p in range(power + 1):
        for divisor in get_divisors(pf):
            yield prime**p * divisor
    pf[prime] = power


def get_pf(n):
    if n < len(pfs):
        return pfs[n]
    else:
        if isPrimeMR(n):
            return {n: 1}
        ans = {}
        for p in primes:

            if n < len(pfs) or n in setprimes:
                break
            power = 0
            while n % p == 0:
Esempio n. 6
0
from helpers import prime_factorizations, sieve
from operator import mul

from sys import setrecursionlimit

# bold call but you gotta do what you gotta do to not rewrite your shitty recursive solution into one using a stack :^)^)^)^)^)^)^)^)^)
setrecursionlimit(10**4)


N = 120000

prime_factorizations = prime_factorizations(N)
primes = sieve(N)

# print prime_factorizations

def rad(n):
	return reduce(mul, prime_factorizations[n].keys())

def abc_hit(a, b, c):
	rad_factors = set(prime_factorizations[c].keys())
	b_factors = set(prime_factorizations[b].keys())
	a_factors = set(prime_factorizations[a].keys())
	rad_factors = rad_factors.union(b_factors)
	rad_factors = rad_factors.union(a_factors)
	return reduce(mul, rad_factors) < c and a_factors.intersection(b_factors) == set()

def possible_nums(prime_candidates, max_num, min_index):
	if min_index >= len(prime_candidates) or max_num < prime_candidates[min_index]:
		yield 1
		return
Esempio n. 7
0
from helpers import sieve, prime_factorizations
from collections import defaultdict

limit = 10**6 * 40

primes = sieve(limit)
setprimes = set(primes)

small_prime_factorizations = prime_factorizations(limit / 40)
small_totient_chain_length = [0]


def euler_phi(prime_factorization):
    answer = 1
    for (prime, power) in prime_factorization.items():
        answer *= prime - 1
        answer *= prime**(power - 1)
    return answer


def compute_chain_length(i):
    if i == 1:
        return 1
    prime_factorization = small_prime_factorizations[i]
    phi_i = euler_phi(prime_factorization)
    return 1 + small_totient_chain_length[phi_i]


def get_chain_length(n):
    if n < len(small_totient_chain_length):
        return small_totient_chain_length[n]
Esempio n. 8
0
from helpers import prime_factorizations, crt, sieve
from itertools import product
'''
153651073760956
[Finished in 2605.0s]

'''


limit = 2 * 10**7
# N = 2 * 10 ** 7

pfs = prime_factorizations(limit / 20)
primes = sieve(limit)
setprimes = set(primes)

def get_pf(n):
	if n < len(pfs):
		return pfs[n]
	else:
		if n in setprimes:
			return {n : 1}
		ans = {}
		for p in primes:

			if n < len(pfs) or n in setprimes:
				break
			power = 0
			while n % p == 0:
				power += 1
				n /= p 
Esempio n. 9
0
'''

659104042
[Finished in 177.4s]

However, it needs like 4 GB of ram to run that fast.
Turning down the number of pfs precomputed will reduce ram usage, but increase compute time.

'''


limit = 10**7
modulus = 1000000007

pfs = prime_factorizations((limit + 1) / 2)

n = limit

primes = sieve(limit + 1)
setprimes = set(primes)

def get_pf(n):
	if n < len(pfs):
		return pfs[n]
	else:
		if n in setprimes:
			return {n : 1}
		ans = {}
		for p in primes:
Esempio n. 10
0
from helpers import prime_factorizations

pfs = prime_factorizations(1000)

def pf_divisors(pf):
	if len(pf) == 0:
		yield 1
		return
	prime, power = pf.popitem()
	for divisor in pf_divisors(pf):
		for i in range(power + 1):
			yield divisor * prime**i

	pf[prime] = power

def divisors(n):
	pf = pfs[n]
	for i in pf_divisors(pf):
		yield i

def proper_divisors(n):
	for divisor in divisors(n):
		if divisor != n:
			yield divisor

def smallest_number_not_in_set(s):
	i = 0
	while i in s:
		i += 1
	return i
Esempio n. 11
0
from helpers import sieve, prime_factorizations
from collections import defaultdict

limit = 10**6 * 40

primes = sieve(limit)
setprimes = set(primes)

small_prime_factorizations = prime_factorizations(limit / 40)
small_totient_chain_length = [0]

def euler_phi(prime_factorization):
	answer = 1
	for (prime, power) in prime_factorization.items():
		answer *= prime - 1
		answer *= prime**(power - 1)
	return answer

def compute_chain_length(i):
	if i == 1:
		return 1
	prime_factorization = small_prime_factorizations[i]
	phi_i = euler_phi(prime_factorization)
	return 1 + small_totient_chain_length[phi_i]

def get_chain_length(n):
	if n < len(small_totient_chain_length):
		return small_totient_chain_length[n]
	else:
		prime_factorization = defaultdict(lambda : 0)
		for prime in primes:
Esempio n. 12
0
from helpers import sieve_euler_phi, crt, gcd, prime_factorizations

upper_limit = 10**6 + 5000
lower_limit = 10**6
print crt([(1, 2), (2, 3), (3, 5)])
euler_phi = sieve_euler_phi(upper_limit + 1)
pfs = prime_factorizations(upper_limit + 1)

def attempt_to_solve(a, n, b, m):
	d = gcd(n, m)
	reduced_a = a % d 
	reduced_b = b % d 
	if reduced_a != reduced_b:
		return 0
	else:
		n_pf = pfs[n]
		m_pf = pfs[m]
		L = []
		for (prime, power) in n_pf.items():
			if prime in m_pf and m_pf[prime] >= power:
				# do nothing for now
				r = 1
			else:
				L.append((a % (prime**power), prime**power))
		for (prime, power) in m_pf.items():
			if prime in n_pf and n_pf[prime] > power:
				# do nothing
				r = 1
			else:
				L.append((b % (prime**power), prime**power))
Esempio n. 13
0
from helpers import sieve_euler_phi, crt, gcd, prime_factorizations

upper_limit = 10**6 + 5000
lower_limit = 10**6
print crt([(1, 2), (2, 3), (3, 5)])
euler_phi = sieve_euler_phi(upper_limit + 1)
pfs = prime_factorizations(upper_limit + 1)


def attempt_to_solve(a, n, b, m):
    d = gcd(n, m)
    reduced_a = a % d
    reduced_b = b % d
    if reduced_a != reduced_b:
        return 0
    else:
        n_pf = pfs[n]
        m_pf = pfs[m]
        L = []
        for (prime, power) in n_pf.items():
            if prime in m_pf and m_pf[prime] >= power:
                # do nothing for now
                r = 1
            else:
                L.append((a % (prime**power), prime**power))
        for (prime, power) in m_pf.items():
            if prime in n_pf and n_pf[prime] > power:
                # do nothing
                r = 1
            else:
                L.append((b % (prime**power), prime**power))