Esempio n. 1
0
 def regression(self):
     self.nn = self.get_pure_model()
     self.nn.fit(self.data.Xtrain, self.data.Ytrain.to_numpy().flatten())
     nn_Ypred = self.nn.predict(self.data.Xtest)
     self.nn_mean_squared_error = mean_squared_error(self.data.Ytest, nn_Ypred)
     self.nn_r2_score = r2_score(self.data.Ytest, nn_Ypred)
     print_training_result_summary('NeuralNetwork', self.nn_mean_squared_error, self.nn_r2_score)
Esempio n. 2
0
    def regression(self):
        self.lasso = linear_model.Lasso(alpha=0.1)
        self.lasso.fit(self.data.Xtrain, self.data.Ytrain)
        lasso_Ypred = self.lasso.predict(self.data.Xtest)

        self.lasso_mean_squared_error = mean_squared_error(
            self.data.Ytest, lasso_Ypred)
        self.lasso_r2_score = r2_score(self.data.Ytest, lasso_Ypred)

        print_training_result_summary('Lasso', self.lasso_mean_squared_error,
                                      self.lasso_r2_score)
Esempio n. 3
0
    def regression(self):
        self.eNet = ElasticNetModel(alpha=1.0)
        self.eNet.fit(self.data.Xtrain, self.data.Ytrain)

        eNet_Ypred = self.eNet.predict(self.data.Xtest)

        self.eNet_mean_squared_error = mean_squared_error(
            self.data.Ytest, eNet_Ypred)
        self.eNet_r2_score = r2_score(self.data.Ytest, eNet_Ypred)

        print_training_result_summary('Elastic Net',
                                      self.eNet_mean_squared_error,
                                      self.eNet_r2_score)
Esempio n. 4
0
    def regression(self):
        self.DecisionTreeM = tree.DecisionTreeRegressor()
        self.DecisionTreeM.fit(self.data.Xtrain, self.data.Ytrain)

        DecisionTree_Ypred = self.DecisionTreeM.predict(self.data.Xtest)

        self.DecisionTree_mean_squared_error = mean_squared_error(
            self.data.Ytest, DecisionTree_Ypred)
        self.DecisionTree_r2_score = r2_score(self.data.Ytest,
                                              DecisionTree_Ypred)

        print_training_result_summary('Decision Tree',
                                      self.DecisionTree_mean_squared_error,
                                      self.DecisionTree_r2_score)
Esempio n. 5
0
    def regression(self):
        self.lasso = linear_model.Lasso(alpha=1.0)
        self.lasso.fit(self.data.Xtrain, self.data.Ytrain)
        lasso_Ypred = self.lasso.predict(self.data.Xtest)

        self.lasso_mean_squared_error = mean_squared_error(
            self.data.Ytest, lasso_Ypred)
        self.lasso_r2_score = r2_score(self.data.Ytest, lasso_Ypred)

        print_training_result_summary('Lasso', self.lasso_mean_squared_error,
                                      self.lasso_r2_score)
        self.save_the_trained_model()
        self.save_the_class_included_the_trained_model()
        return training_result_summary('Lasso', self.lasso_mean_squared_error,
                                       self.lasso_r2_score)
Esempio n. 6
0
    def regression(self):
        self.ridge = RidgeModel(alpha=1.0)
        self.ridge.fit(self.data.Xtrain, self.data.Ytrain)

        ridge_Ypred = self.ridge.predict(self.data.Xtest)

        self.ridge_mean_squared_error = mean_squared_error(
            self.data.Ytest, ridge_Ypred)
        self.ridge_r2_score = r2_score(self.data.Ytest, ridge_Ypred)

        print_training_result_summary('Ridge', self.ridge_mean_squared_error,
                                      self.ridge_r2_score)
        self.save_the_trained_model()
        self.save_the_class_included_the_trained_model()
        return training_result_summary('Ridge', self.ridge_mean_squared_error,
                                       self.ridge_r2_score)
Esempio n. 7
0
    def regression(self):
        """
        Traing the machine learning model on the internal data.
        """
        self.model = linear_model.LinearRegression()
        self.model.fit(self.data.Xtrain, self.data.Ytrain)
        model_Ypred = self.model.predict(self.data.Xtest)

        self.model_mean_squared_error = mean_squared_error(self.data.Ytest, model_Ypred)
        self.model_r2_score = r2_score(self.data.Ytest, model_Ypred)

        print_training_result_summary(
            'LinearRegression', self.model_mean_squared_error, self.model_r2_score)

        self.save_the_trained_model()
        self.save_the_class_included_the_trained_model()
        return training_result_summary(
            'LinearRegression', self.model_mean_squared_error, self.model_r2_score)
Esempio n. 8
0
    def regression(self):
        warnings.filterwarnings("ignore")
        self.RandomForestM = RandomForestRegressor(max_depth=2, random_state=0)
        self.RandomForestM.fit(self.data.Xtrain, self.data.Ytrain)

        RandomForest_Ypred = self.RandomForestM.predict(self.data.Xtest)

        self.RandomForest_mean_squared_error = mean_squared_error(
            self.data.Ytest, RandomForest_Ypred)
        self.RandomForest_r2_score = r2_score(self.data.Ytest,
                                              RandomForest_Ypred)

        print_training_result_summary('Random Forest',
                                      self.RandomForest_mean_squared_error,
                                      self.RandomForest_r2_score)
        self.save_the_trained_model()
        self.save_the_class_included_the_trained_model()
        return training_result_summary('Random Forest',
                                       self.RandomForest_mean_squared_error,
                                       self.RandomForest_r2_score)
Esempio n. 9
0
    def regression(self):
        self.nn = self.get_pure_model()

        self.data.Y = self.data.Y.to_numpy()
        self.data.X = self.data.X.to_numpy()

        # shape the data ex. (5000,)
        self.data.Y = self.data.Y[:, 0]

        # Partition the data into training and test sets.
        self.data.Xtrain, self.data.Xtest, self.data.Ytrain, self.data.Ytest = train_test_split(self.data.X, self.data.Y, test_size=0.33,
                                                                            random_state=42)

        self.nn.fit(self.data.Xtrain, self.data.Ytrain)
        nn_Ypred = self.nn.predict(self.data.Xtest)
        self.nn_mean_squared_error = mean_squared_error(self.data.Ytest, nn_Ypred)
        self.nn_r2_score = r2_score(self.data.Ytest, nn_Ypred)
        print_training_result_summary('NeuralNetwork', self.nn_mean_squared_error, self.nn_r2_score)


        self.save_the_trained_model()
        self.save_the_class_included_the_trained_model()

        return training_result_summary('NeuralNetwork', self.nn_mean_squared_error, self.nn_r2_score)