def g_mean_provided2(self, x, y_bar, args, reuse=False): with tf.variable_scope('encoder', reuse=reuse), \ arg_scope([hem.conv2d], reuse=reuse, filter_size=5, stride=2, padding='VALID', init=tf.contrib.layers.xavier_initializer, activation=tf.nn.relu): # 65x65x3 x = tf.concat([x, tf.ones((args.batch_size, 1, 65, 65))], axis=1) e1 = hem.conv2d(x, 4, 64, name='e1') # 31x31x64 # e1 = tf.concat([e1, tf.ones((args.batch_size, 1, 31, 31)) * y_bar], axis=1) e2 = hem.conv2d(e1, 64, 128, name='e2') # 14x14x128 e3 = hem.conv2d(e2, 128, 256, name='e3') # 5x5x256 e4 = hem.conv2d(e3, 256, 512, name='e4') # 1x1x512 with tf.variable_scope('decoder', reuse=reuse), \ arg_scope([hem.deconv2d, hem.conv2d], reuse=reuse, filter_size=5, stride=2, init=tf.contrib.layers.xavier_initializer, padding='VALID', activation=lambda x: hem.lrelu(x, leak=0.2)): # 1x1x512 y_hat = hem.deconv2d(e4, 512, 256, output_shape=(args.batch_size, 256, 5, 5), name='d1') # 5x5x256 y_hat = tf.concat([y_hat, e3], axis=1) # 5x5x512 y_hat = hem.deconv2d(y_hat, 512, 128, output_shape=(args.batch_size, 128, 14, 14), name='d2') # 14x14x128 y_hat = tf.concat([y_hat, e2], axis=1) # 14x14x256 y_hat = hem.deconv2d(y_hat, 256, 64, output_shape=(args.batch_size, 64, 31, 31), name='d3') # 31x31x64 y_hat = tf.concat([y_hat, e1], axis=1) # 31x31x128 y_hat = hem.conv2d(y_hat, 128, 1, stride=1, filter_size=1, padding='SAME', activation=None, name='d4') # 31x31x1 y_hat = hem.crop_to_bounding_box(y_hat, 0, 0, 29, 29) # 29x29x1 # y_hat = tf.maximum(y_hat, tf.zeros_like(y_hat)) return y_hat
def __init__(self, x_y, args): # init/setup g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2) d_opt = tf.train.AdamOptimizer(args.d_lr, args.d_beta1, args.d_beta2) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range( x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = x_y[0] y = x_y[1] # re-attach shape info x = tf.reshape(x, (args.batch_size, 3, 65, 65)) # rescale from [0,1] to actual world depth y = y * 10.0 y = hem.crop_to_bounding_box(y, 17, 17, 29, 29) # re-attach shape info y = tf.reshape(y, (args.batch_size, 1, 29, 29)) y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True) x_sample = tf.stack([x[0]] * args.batch_size) y_sample = tf.stack([y[0]] * args.batch_size) # create model with tf.variable_scope('generator'): if args.model_version == 'baseline': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar g_sampler = self.g_baseline(x_sample, args, reuse=True) y_sample_bar = tf.reduce_mean(y_sample, axis=[2, 3], keep_dims=True) y_sampler = g_sampler + y_sample_bar with tf.variable_scope('discriminator'): if args.model_version == 'baseline': # this is the 'mean_adjusted' model from paper_baseline_sampler.py d_fake, d_fake_logits = self.d_baseline(x, y_hat - y_bar, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_baseline(x, y - y_bar, args, reuse=True) # calculate losses g_loss, d_loss = self.loss(d_real, d_real_logits, d_fake, d_fake_logits, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append( g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append( d_opt.compute_gradients(d_loss, var_list=d_params)) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') hem.summarize_gradients(d_grads, name='d_gradients') generator_layers = [ l for l in tf.get_collection('conv_layers') if 'generator' in l.name ] discriminator_layers = [ l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name ] hem.summarize_layers('g_activations', generator_layers, montage=True) hem.summarize_layers('d_activations', discriminator_layers, montage=True) self.montage_summaries(x, y, g, y_hat, args, name='y_hat') self.metric_summaries(x, y, g, y_hat, args, name='y_hat') self.metric_summaries(x, y, g_0, y_0, args, name='y_0') self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean') self.metric_summaries(x_sample, y_sample, g_sampler, y_sampler, args, name='y_sampler') self.montage_summaries(x_sample, y_sample, g_sampler, y_sampler, args, name='y_sampler') # training ops self.g_train_op = g_apply_grads self.d_train_op = d_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def g_baseline(self, x, args, reuse=False): with tf.variable_scope('encoder', reuse=reuse), \ arg_scope([hem.conv2d], reuse=reuse, filter_size=5, stride=2, padding='VALID', use_batch_norm=args.e_bn, init=tf.contrib.layers.xavier_initializer, activation=tf.nn.relu): # 65x65x3 if args.noise_layer == 'x': noise = tf.random_uniform([args.batch_size, 1, 65, 65], minval=0, maxval=1) e1 = hem.conv2d(tf.concat([x, noise], axis=1), 4, 64, name='e1') # 31x31x64 else: e1 = hem.conv2d(x, 3, 64, name='e1') if args.noise_layer == 'e1': noise = tf.random_uniform([args.batch_size, 1, 31, 31], minval=0, maxval=1) e2 = hem.conv2d(tf.concat([e1, noise], axis=1), 65, 128, name='e2') # 14x14x128 else: e2 = hem.conv2d(e1, 64, 128, name='e2') # 14x14x128 if args.noise_layer == 'e2': noise = tf.random_uniform([args.batch_size, 1, 14, 14], minval=0, maxval=1) e3 = hem.conv2d(tf.concat([e2, noise], axis=1), 129, 256, name='e3') # 5x5x256 else: e3 = hem.conv2d(e2, 128, 256, name='e3') # 5x5x256 if args.noise_layer == 'e3': noise = tf.random_uniform([args.batch_size, 1, 5, 5], minval=0, maxval=1) e4 = hem.conv2d(tf.concat([e3, noise], axis=1), 257, 512, name='e4') # 1x1x512 else: e4 = hem.conv2d(e3, 256, 512, name='e4') # 1x1x512 with tf.variable_scope('decoder', reuse=reuse), \ arg_scope([hem.deconv2d, hem.conv2d], reuse=reuse, filter_size=5, stride=2, init=tf.contrib.layers.xavier_initializer, padding='VALID', activation=lambda x: hem.lrelu(x, leak=0.2)): # 1x1x512 # TODO: noise could be of size 512, instead of 1 if args.noise_layer == 'e4': noise = tf.random_uniform([args.batch_size, 1, 1, 1], minval=0, maxval=1) y_hat = hem.deconv2d(tf.concat([e4, noise], axis=1), 513, 256, output_shape=(args.batch_size, 256, 5, 5), name='d1') # 5x5x256 elif args.noise_layer == 'e4-512': noise = tf.random_uniform([args.batch_size, 512, 1, 1], minval=0, maxval=1) y_hat = hem.deconv2d(tf.concat([e4, noise], axis=1), 1024, 256, output_shape=(args.batch_size, 256, 5, 5), name='d1') # 5x5x256 else: y_hat = hem.deconv2d(e4, 512, 256, output_shape=(args.batch_size, 256, 5, 5), name='d1') # 5x5x256 y_hat = tf.concat([y_hat, e3], axis=1) # 5x5x512 if args.noise_layer == 'd2': noise = tf.random_uniform([args.batch_size, 1, 5, 5], minval=0, maxval=1) y_hat = hem.deconv2d(tf.concat([y_hat, noise], axis=1), 513, 128, output_shape=(args.batch_size, 128, 14, 14), name='d2') # 14x14x128z else: y_hat = hem.deconv2d(y_hat, 512, 128, output_shape=(args.batch_size, 128, 14, 14), name='d2') # 14x14x128z y_hat = tf.concat([y_hat, e2], axis=1) # 14x14x256 if args.noise_layer == 'd3': noise = tf.random_uniform([args.batch_size, 1, 14, 14], minval=0, maxval=1) y_hat = hem.deconv2d(tf.concat([y_hat, noise], axis=1), 257, 64, output_shape=(args.batch_size, 64, 31, 31), name='d3') # 31x31x64 else: y_hat = hem.deconv2d(y_hat, 256, 64, output_shape=(args.batch_size, 64, 31, 31), name='d3') # 31x31x64 y_hat = tf.concat([y_hat, e1], axis=1) # 31x31x128 if args.noise_layer == 'd4': noise = tf.random_uniform([args.batch_size, 1, 31, 31], minval=0, maxval=1) y_hat = hem.conv2d(tf.concat([y_hat, noise], axis=1), 129, 1, stride=1, filter_size=1, padding='SAME', activation=None, name='d4') # 31x31x1 else: y_hat = hem.conv2d(y_hat, 128, 1, stride=1, filter_size=1, padding='SAME', activation=None, name='d4') # 31x31x1 y_hat = hem.crop_to_bounding_box(y_hat, 0, 0, 29, 29) # 29x29x1 #y_hat = tf.maximum(y_hat, tf.zeros_like(y_hat)) return y_hat
def __init__(self, x_y, args): # init/setup g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2) g_tower_grads = [] global_step = tf.train.get_global_step() self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) self.x = [] self.y = [] self.y_hat = [] self.g = [] # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = tf.identity(x_y[0], name='tower_{}_x'.format(gpu_id)) y = tf.identity(x_y[1], name='tower_{}_y'.format(gpu_id)) # re-attach shape info x = tf.reshape(x, (args.batch_size, 3, 65, 65)) # rescale from [0,1] to actual world depth y = y * 10.0 y = hem.crop_to_bounding_box(y, 17, 17, 29, 29) # re-attach shape info y = tf.reshape(y, (args.batch_size, 1, 29, 29)) y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True) y_bar = tf.identity(y_bar, name='tower_{}_y_bar'.format(gpu_id)) # create model with tf.variable_scope('generator'): if args.model_version == 'baseline': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g y_0 = g_0 elif args.model_version == 'mean_adjusted': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar elif args.model_version == 'mean_provided': g = self.g_mean_provided(x, y_bar, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar elif args.model_version == 'mean_provided2': g = self.g_mean_provided2(x, y_bar, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar g = tf.identity(g, 'tower_{}_g'.format(gpu_id)) g_0 = tf.identity(g_0, 'tower_{}_g0'.format(gpu_id)) y_hat = tf.identity(y_hat, 'tower_{}_y_hat'.format(gpu_id)) y_0 = tf.identity(y_0, 'tower_{}_y0'.format(gpu_id)) # if gpu_id == 0: # tf.summary.histogram('g', g) # tf.summary.histogram('y_hat', y_hat) # tf.summary.histogram('y_0', y_0) # hem.montage(g, num_examples=64, width=8, height=8, name='g') # hem.montage(y_hat, num_examples=64, width=8, height=8, name='y_hat') # hem.montage(y_0, num_examples=64, width=8, height=8, name='y_0') self.g.append(g) self.y_hat.append(y_hat) self.y.append(y) self.x.append(x) # calculate losses g_loss = self.loss(x, y, y_hat, args, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') generator_layers = [l for l in tf.get_collection('conv_layers') if 'generator' in l.name] hem.summarize_layers('g_activations', generator_layers, montage=True) self.montage_summaries(x, y, g, y_hat, args) self.metric_summaries(x, y, g, y_hat, args, name='y_hat') self.metric_summaries(x, y, g_0, y_0, args, name='y_0') self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean') # training ops self.g_train_op = g_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def __init__(self, x_y, estimator, args): # init/setup g_opt = hem.init_optimizer(args) d_opt = hem.init_optimizer(args) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() # sess = tf.Session(config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) # new_saver = tf.train.import_meta_graph( # '/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1/checkpoint-4.meta', import_scope='estimator') # new_saver.restore(sess, tf.train.latest_checkpoint('/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1')) # # # estimator_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) # # print('estimator_vars:', estimator_vars) # # # print('all ops!') # # for op in tf.get_default_graph().get_operations(): # # if 'l8' in str(op.name): # # print(str(op.name)) # # # # sess.graph # # graph = tf.get_default_graph() # estimator_tower0 = sess.graph.as_graph_element('estimator/tower_0/model/l8/add').outputs[0] # estimator_tower1 = sess.graph.as_graph_element('estimator/tower_1/model/l8/add').outputs[0] # self.estimator_placeholder = sess.graph.as_graph_element('estimator/input_pipeline/Placeholder') #.outputs[0] # print('PLACEHOLDER:', self.estimator_placeholder) # print('estimator_tower0:', estimator_tower0) # print('estimator_tower1:', estimator_tower1) # estimator_tower0 = tf.stop_gradient(estimator_tower0) # estimator_tower1 = tf.stop_gradient(estimator_tower1) # sess.close() # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = hem.rescale(x_y[0], (0, 1), (-1, 1)) y = hem.rescale(x_y[1], (0, 1), (-1, 1)) # if args.g_arch == 'E2': y = hem.crop_to_bounding_box(y, 16, 16, 32, 32) y = tf.reshape(y, (-1, 1, 32, 32)) x_loc = x_y[2] y_loc = x_y[3] scene_image = x_y[4] mean_depth = tf.stop_gradient(estimator.output_layer) # print('mean_depth_layer:', estimator.output_layer) # mean_depth = estimator(scene_image) # mean_depth = tf.expand_dims(mean_depth, axis=-1) # mean_depth = tf.expand_dims(mean_depth, axis=-1) mean_depth_channel = tf.stack([mean_depth] * 64, axis=2) mean_depth_channel = tf.stack([mean_depth_channel] * 64, axis=3) # mean_depth_channel = tf.squeeze(mean_depth_channel) # print('mean_depth_layer99:', mean_depth_channel) # mean_depth_channel = tf.ones_like(x_loc) * mean_depth # print('x', x) # print('x_loc', x_loc) # print('y_loc', y_loc) # print('mean_depth_channel', mean_depth_channel) x = tf.concat([x, x_loc, y_loc, mean_depth_channel], axis=1) # print('x shape:', x) # create repeated image tensors for sampling x_sample = tf.stack([x[0]] * args.batch_size) y_sample = tf.stack([y[0]] * args.batch_size) # shuffled x for variance calculation x_shuffled = tf.random_shuffle(x) y_shuffled = y # noise vector for testing x_noise = tf.random_uniform(tf.stack([tf.Dimension(args.batch_size), x.shape[1], x.shape[2], x.shape[3]]), minval=-1.0, maxval=1.0) g_arch = {'E2': experimental_sampler.generatorE2} d_arch = {'E2': experimental_sampler.discriminatorE2} # create model with tf.variable_scope('generator'): g_func = g_arch[args.g_arch] g = g_func(x, args, reuse=(gpu_id > 0)) g_sampler = g_func(x_sample, args, reuse=True) g_shuffle = g_func(x_shuffled, args, reuse=True) g_noise = g_func(x_noise, args, reuse=True) with tf.variable_scope('discriminator'): d_func = d_arch[args.d_arch] d_real, d_real_logits = d_func(x, y, args, reuse=(gpu_id > 0)) d_fake, d_fake_logits = d_func(x, g, args, reuse=True) # calculate losses g_loss, d_loss = experimental_sampler.loss(d_real, d_real_logits, d_fake, d_fake_logits, x, g, y, None, args, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params)) # only need one batchnorm update (ends up being updates for last tower) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) # TODO: do we need to do this update for batchrenorm? for instance renorm? # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') hem.summarize_gradients(d_grads, name='d_gradients') hem.summarize_layers('g_activations', [l for l in tf.get_collection('conv_layers') if 'generator' in l.name], montage=True) hem.summarize_layers('d_activations', [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name], montage=True) experimental_sampler.montage_summaries(x, y, g, x_sample, y_sample, g_sampler, x_noise, g_noise, x_shuffled, y_shuffled, g_shuffle, args) experimental_sampler.sampler_summaries(y_sample, g_sampler, g_noise, y_shuffled, g_shuffle, args) # training ops with tf.control_dependencies(batchnorm_updates): self.g_train_op = g_apply_grads self.d_train_op = d_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def __init__(self, x_y, args): # init/setup # wgan training if args.training_version == 'wgan': g_opt = tf.train.RMSPropOptimizer(args.g_lr) d_opt = tf.train.AdamOptimizer(args.d_lr) else: g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2) d_opt = tf.train.AdamOptimizer(args.d_lr, args.d_beta1, args.d_beta2) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() self.x = [] self.y = [] self.y_hat = [] self.g = [] self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = tf.identity(x_y[0], name='tower_{}_x'.format(gpu_id)) y = tf.identity(x_y[1], name='tower_{}_y'.format(gpu_id)) # re-attach shape info x = tf.reshape(x, (args.batch_size, 3, 65, 65)) # rescale from [0,1] to actual world depth y = y * 10.0 y = hem.crop_to_bounding_box(y, 17, 17, 29, 29) # re-attach shape info y = tf.reshape(y, (args.batch_size, 1, 29, 29)) y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True) y_bar = tf.identity(y_bar, name='tower_{}_y_bar'.format(gpu_id)) # create model with tf.variable_scope('generator'): if args.model_version == 'baseline': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g y_0 = g_0 elif args.model_version == 'mean_adjusted': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar elif args.model_version == 'mean_provided': g = self.g_mean_provided(x, y_bar, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar elif args.model_version == 'mean_provided2': g = self.g_mean_provided2(x, y_bar, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar g = tf.identity(g, 'tower_{}_g'.format(gpu_id)) g_0 = tf.identity(g_0, 'tower_{}_g0'.format(gpu_id)) y_hat = tf.identity(y_hat, 'tower_{}_y_hat'.format(gpu_id)) y_0 = tf.identity(y_0, 'tower_{}_y0'.format(gpu_id)) with tf.variable_scope('discriminator'): if args.model_version == 'baseline': d_fake, d_fake_logits = self.d_baseline(x, y_hat, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_baseline(x, y, args, reuse=True) elif args.model_version == 'mean_adjusted': d_fake, d_fake_logits = self.d_baseline(x, y_hat - y_bar, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_baseline(x, y - y_bar, args, reuse=True) elif args.model_version == 'mean_provided': d_fake, d_fake_logits = self.d_mean_provided(x, y_hat - y_bar, y_bar, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_mean_provided(x, y - y_bar, y_bar, args, reuse=True) elif args.model_version == 'mean_provided2': d_fake, d_fake_logits = self.d_mean_provided2(x, y_hat - y_bar, y_bar, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_mean_provided2(x, y - y_bar, y_bar, args, reuse=True) d_fake = tf.identity(d_fake, 'tower_{}_d_fake'.format(gpu_id)) d_real = tf.identity(d_real, 'tower_{}_d_real'.format(gpu_id)) d_fake_logits = tf.identity(d_fake_logits, 'tower_{}_d_fake_logits'.format(gpu_id)) d_real_logits = tf.identity(d_real_logits, 'tower_{}_d_real_logits'.format(gpu_id)) self.g.append(g) self.y_hat.append(y_hat) self.y.append(y) self.x.append(x) # calculate losses g_loss, d_loss = self.loss(d_real, d_real_logits, d_fake, d_fake_logits, args, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params)) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') hem.summarize_gradients(d_grads, name='d_gradients') generator_layers = [l for l in tf.get_collection('conv_layers') if 'generator' in l.name] discriminator_layers = [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name] hem.summarize_layers('g_activations', generator_layers, montage=True) hem.summarize_layers('d_activations', discriminator_layers, montage=True) self.montage_summaries(x, y, g, y_hat, args) self.metric_summaries(x, y, g, y_hat, args, name='y_hat') self.metric_summaries(x, y, g_0, y_0, args, name='y_0') self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean') # training ops if args.training_version == 'wgan': clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in d_params] clip_G = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in g_params] with tf.control_dependencies(clip_D): self.d_train_op = d_apply_grads with tf.control_dependencies(clip_G): self.g_train_op = g_apply_grads else: self.g_train_op = g_apply_grads self.d_train_op = d_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))