Esempio n. 1
0
 def g_mean_provided2(self, x, y_bar, args, reuse=False):
     with tf.variable_scope('encoder', reuse=reuse), \
          arg_scope([hem.conv2d],
                    reuse=reuse,
                    filter_size=5,
                    stride=2,
                    padding='VALID',
                    init=tf.contrib.layers.xavier_initializer,
                    activation=tf.nn.relu):  # 65x65x3
         x = tf.concat([x, tf.ones((args.batch_size, 1, 65, 65))], axis=1)
         e1 = hem.conv2d(x, 4, 64, name='e1')  # 31x31x64
         # e1 = tf.concat([e1, tf.ones((args.batch_size, 1, 31, 31)) * y_bar], axis=1)
         e2 = hem.conv2d(e1, 64, 128, name='e2')  # 14x14x128
         e3 = hem.conv2d(e2, 128, 256, name='e3')  # 5x5x256
         e4 = hem.conv2d(e3, 256, 512, name='e4')  # 1x1x512
     with tf.variable_scope('decoder', reuse=reuse), \
          arg_scope([hem.deconv2d, hem.conv2d],
                    reuse=reuse,
                    filter_size=5,
                    stride=2,
                    init=tf.contrib.layers.xavier_initializer,
                    padding='VALID',
                    activation=lambda x: hem.lrelu(x, leak=0.2)):  # 1x1x512
         y_hat = hem.deconv2d(e4, 512, 256, output_shape=(args.batch_size, 256, 5, 5), name='d1')  # 5x5x256
         y_hat = tf.concat([y_hat, e3], axis=1)  # 5x5x512
         y_hat = hem.deconv2d(y_hat, 512, 128, output_shape=(args.batch_size, 128, 14, 14), name='d2')  # 14x14x128
         y_hat = tf.concat([y_hat, e2], axis=1)  # 14x14x256
         y_hat = hem.deconv2d(y_hat, 256, 64, output_shape=(args.batch_size, 64, 31, 31), name='d3')  # 31x31x64
         y_hat = tf.concat([y_hat, e1], axis=1)  # 31x31x128
         y_hat = hem.conv2d(y_hat, 128, 1, stride=1, filter_size=1, padding='SAME', activation=None,
                            name='d4')  # 31x31x1
         y_hat = hem.crop_to_bounding_box(y_hat, 0, 0, 29, 29)  # 29x29x1
         # y_hat = tf.maximum(y_hat, tf.zeros_like(y_hat))
     return y_hat
Esempio n. 2
0
    def __init__(self, x_y, args):
        # init/setup
        g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2)
        d_opt = tf.train.AdamOptimizer(args.d_lr, args.d_beta1, args.d_beta2)
        g_tower_grads = []
        d_tower_grads = []
        global_step = tf.train.get_global_step()

        self.mean_image_placeholder = tf.placeholder(dtype=tf.float32,
                                                     shape=(1, 29, 29))
        # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))

        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(
                x_y, args.n_gpus, args.batch_size):
            with tf.variable_scope('input_preprocess'):
                # split inputs and rescale
                x = x_y[0]
                y = x_y[1]

                # re-attach shape info
                x = tf.reshape(x, (args.batch_size, 3, 65, 65))
                # rescale from [0,1] to actual world depth
                y = y * 10.0
                y = hem.crop_to_bounding_box(y, 17, 17, 29, 29)
                # re-attach shape info
                y = tf.reshape(y, (args.batch_size, 1, 29, 29))
                y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True)
                x_sample = tf.stack([x[0]] * args.batch_size)
                y_sample = tf.stack([y[0]] * args.batch_size)

            # create model
            with tf.variable_scope('generator'):
                if args.model_version == 'baseline':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                    g_sampler = self.g_baseline(x_sample, args, reuse=True)
                    y_sample_bar = tf.reduce_mean(y_sample,
                                                  axis=[2, 3],
                                                  keep_dims=True)
                    y_sampler = g_sampler + y_sample_bar

            with tf.variable_scope('discriminator'):
                if args.model_version == 'baseline':
                    # this is the 'mean_adjusted' model from paper_baseline_sampler.py
                    d_fake, d_fake_logits = self.d_baseline(x,
                                                            y_hat - y_bar,
                                                            args,
                                                            reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_baseline(x,
                                                            y - y_bar,
                                                            args,
                                                            reuse=True)

            # calculate losses
            g_loss, d_loss = self.loss(d_real,
                                       d_real_logits,
                                       d_fake,
                                       d_fake_logits,
                                       reuse=(gpu_id > 0))
            # calculate gradients
            g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                         'generator')
            d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                         'discriminator')
            g_tower_grads.append(
                g_opt.compute_gradients(g_loss, var_list=g_params))
            d_tower_grads.append(
                d_opt.compute_gradients(d_loss, var_list=d_params))

        # average and apply gradients
        g_grads = hem.average_gradients(g_tower_grads,
                                        check_numerics=args.check_numerics)
        d_grads = hem.average_gradients(d_tower_grads,
                                        check_numerics=args.check_numerics)
        g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)
        d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(g_grads, name='g_gradients')
        hem.summarize_gradients(d_grads, name='d_gradients')
        generator_layers = [
            l for l in tf.get_collection('conv_layers')
            if 'generator' in l.name
        ]
        discriminator_layers = [
            l for l in tf.get_collection('conv_layers')
            if 'discriminator' in l.name
        ]
        hem.summarize_layers('g_activations', generator_layers, montage=True)
        hem.summarize_layers('d_activations',
                             discriminator_layers,
                             montage=True)
        self.montage_summaries(x, y, g, y_hat, args, name='y_hat')
        self.metric_summaries(x, y, g, y_hat, args, name='y_hat')
        self.metric_summaries(x, y, g_0, y_0, args, name='y_0')
        self.metric_summaries(x,
                              y,
                              g,
                              self.mean_image_placeholder * 10.0,
                              args,
                              name='y_mean')
        self.metric_summaries(x_sample,
                              y_sample,
                              g_sampler,
                              y_sampler,
                              args,
                              name='y_sampler')
        self.montage_summaries(x_sample,
                               y_sample,
                               g_sampler,
                               y_sampler,
                               args,
                               name='y_sampler')

        # training ops
        self.g_train_op = g_apply_grads
        self.d_train_op = d_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
Esempio n. 3
0
    def g_baseline(self, x, args, reuse=False):
        with tf.variable_scope('encoder', reuse=reuse), \
             arg_scope([hem.conv2d],
                       reuse=reuse,
                       filter_size=5,
                       stride=2,
                       padding='VALID',
                       use_batch_norm=args.e_bn,
                       init=tf.contrib.layers.xavier_initializer,
                       activation=tf.nn.relu):        # 65x65x3
            if args.noise_layer == 'x':
                noise = tf.random_uniform([args.batch_size, 1, 65, 65],
                                          minval=0,
                                          maxval=1)
                e1 = hem.conv2d(tf.concat([x, noise], axis=1),
                                4,
                                64,
                                name='e1')  # 31x31x64

            else:
                e1 = hem.conv2d(x, 3, 64, name='e1')

            if args.noise_layer == 'e1':
                noise = tf.random_uniform([args.batch_size, 1, 31, 31],
                                          minval=0,
                                          maxval=1)
                e2 = hem.conv2d(tf.concat([e1, noise], axis=1),
                                65,
                                128,
                                name='e2')  # 14x14x128
            else:
                e2 = hem.conv2d(e1, 64, 128, name='e2')  # 14x14x128

            if args.noise_layer == 'e2':
                noise = tf.random_uniform([args.batch_size, 1, 14, 14],
                                          minval=0,
                                          maxval=1)
                e3 = hem.conv2d(tf.concat([e2, noise], axis=1),
                                129,
                                256,
                                name='e3')  # 5x5x256
            else:
                e3 = hem.conv2d(e2, 128, 256, name='e3')  # 5x5x256

            if args.noise_layer == 'e3':
                noise = tf.random_uniform([args.batch_size, 1, 5, 5],
                                          minval=0,
                                          maxval=1)
                e4 = hem.conv2d(tf.concat([e3, noise], axis=1),
                                257,
                                512,
                                name='e4')  # 1x1x512
            else:
                e4 = hem.conv2d(e3, 256, 512, name='e4')  # 1x1x512

        with tf.variable_scope('decoder', reuse=reuse), \
             arg_scope([hem.deconv2d, hem.conv2d],
                       reuse=reuse,
                       filter_size=5,
                       stride=2,
                       init=tf.contrib.layers.xavier_initializer,
                       padding='VALID',
                       activation=lambda x: hem.lrelu(x, leak=0.2)):                                                # 1x1x512
            # TODO: noise could be of size 512, instead of 1
            if args.noise_layer == 'e4':
                noise = tf.random_uniform([args.batch_size, 1, 1, 1],
                                          minval=0,
                                          maxval=1)
                y_hat = hem.deconv2d(tf.concat([e4, noise], axis=1),
                                     513,
                                     256,
                                     output_shape=(args.batch_size, 256, 5, 5),
                                     name='d1')  # 5x5x256
            elif args.noise_layer == 'e4-512':
                noise = tf.random_uniform([args.batch_size, 512, 1, 1],
                                          minval=0,
                                          maxval=1)
                y_hat = hem.deconv2d(tf.concat([e4, noise], axis=1),
                                     1024,
                                     256,
                                     output_shape=(args.batch_size, 256, 5, 5),
                                     name='d1')  # 5x5x256
            else:
                y_hat = hem.deconv2d(e4,
                                     512,
                                     256,
                                     output_shape=(args.batch_size, 256, 5, 5),
                                     name='d1')  # 5x5x256
            y_hat = tf.concat([y_hat, e3], axis=1)  # 5x5x512

            if args.noise_layer == 'd2':
                noise = tf.random_uniform([args.batch_size, 1, 5, 5],
                                          minval=0,
                                          maxval=1)
                y_hat = hem.deconv2d(tf.concat([y_hat, noise], axis=1),
                                     513,
                                     128,
                                     output_shape=(args.batch_size, 128, 14,
                                                   14),
                                     name='d2')  # 14x14x128z
            else:
                y_hat = hem.deconv2d(y_hat,
                                     512,
                                     128,
                                     output_shape=(args.batch_size, 128, 14,
                                                   14),
                                     name='d2')  # 14x14x128z
            y_hat = tf.concat([y_hat, e2], axis=1)  # 14x14x256

            if args.noise_layer == 'd3':
                noise = tf.random_uniform([args.batch_size, 1, 14, 14],
                                          minval=0,
                                          maxval=1)
                y_hat = hem.deconv2d(tf.concat([y_hat, noise], axis=1),
                                     257,
                                     64,
                                     output_shape=(args.batch_size, 64, 31,
                                                   31),
                                     name='d3')  # 31x31x64
            else:
                y_hat = hem.deconv2d(y_hat,
                                     256,
                                     64,
                                     output_shape=(args.batch_size, 64, 31,
                                                   31),
                                     name='d3')  # 31x31x64
            y_hat = tf.concat([y_hat, e1], axis=1)  # 31x31x128

            if args.noise_layer == 'd4':
                noise = tf.random_uniform([args.batch_size, 1, 31, 31],
                                          minval=0,
                                          maxval=1)
                y_hat = hem.conv2d(tf.concat([y_hat, noise], axis=1),
                                   129,
                                   1,
                                   stride=1,
                                   filter_size=1,
                                   padding='SAME',
                                   activation=None,
                                   name='d4')  # 31x31x1
            else:
                y_hat = hem.conv2d(y_hat,
                                   128,
                                   1,
                                   stride=1,
                                   filter_size=1,
                                   padding='SAME',
                                   activation=None,
                                   name='d4')  # 31x31x1
            y_hat = hem.crop_to_bounding_box(y_hat, 0, 0, 29, 29)  # 29x29x1
            #y_hat = tf.maximum(y_hat, tf.zeros_like(y_hat))
        return y_hat
Esempio n. 4
0
    def __init__(self, x_y, args):
        # init/setup
        g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2)
        g_tower_grads = []
        global_step = tf.train.get_global_step()

        self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))
        # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))

        self.x = []
        self.y = []
        self.y_hat = []
        self.g = []

        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size):
            with tf.variable_scope('input_preprocess'):
                # split inputs and rescale
                x = tf.identity(x_y[0], name='tower_{}_x'.format(gpu_id))
                y = tf.identity(x_y[1], name='tower_{}_y'.format(gpu_id))
                # re-attach shape info
                x = tf.reshape(x, (args.batch_size, 3, 65, 65))
                # rescale from [0,1] to actual world depth
                y = y * 10.0
                y = hem.crop_to_bounding_box(y, 17, 17, 29, 29)
                # re-attach shape info
                y = tf.reshape(y, (args.batch_size, 1, 29, 29))
                y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True)
                y_bar = tf.identity(y_bar, name='tower_{}_y_bar'.format(gpu_id))



            # create model
            with tf.variable_scope('generator'):
                if args.model_version == 'baseline':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g
                    y_0 = g_0
                elif args.model_version == 'mean_adjusted':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                elif args.model_version == 'mean_provided':
                    g = self.g_mean_provided(x, y_bar, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                elif args.model_version == 'mean_provided2':
                    g = self.g_mean_provided2(x, y_bar, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar

                g = tf.identity(g, 'tower_{}_g'.format(gpu_id))
                g_0 = tf.identity(g_0, 'tower_{}_g0'.format(gpu_id))
                y_hat = tf.identity(y_hat, 'tower_{}_y_hat'.format(gpu_id))
                y_0 = tf.identity(y_0, 'tower_{}_y0'.format(gpu_id))

                # if gpu_id == 0:
                #     tf.summary.histogram('g', g)
                #     tf.summary.histogram('y_hat', y_hat)
                #     tf.summary.histogram('y_0', y_0)
                #     hem.montage(g, num_examples=64, width=8, height=8, name='g')
                #     hem.montage(y_hat, num_examples=64, width=8, height=8, name='y_hat')
                #     hem.montage(y_0, num_examples=64, width=8, height=8, name='y_0')

                self.g.append(g)
                self.y_hat.append(y_hat)
                self.y.append(y)
                self.x.append(x)

            # calculate losses
            g_loss = self.loss(x, y, y_hat, args, reuse=(gpu_id > 0))
            # calculate gradients
            g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
            g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params))

        # average and apply gradients
        g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics)
        g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(g_grads, name='g_gradients')
        generator_layers = [l for l in tf.get_collection('conv_layers') if 'generator' in l.name]
        hem.summarize_layers('g_activations', generator_layers, montage=True)
        self.montage_summaries(x, y, g, y_hat, args)
        self.metric_summaries(x, y, g, y_hat, args, name='y_hat')
        self.metric_summaries(x, y, g_0, y_0, args, name='y_0')
        self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean')

        # training ops
        self.g_train_op = g_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
Esempio n. 5
0
    def __init__(self, x_y, estimator, args):
        # init/setup
        g_opt = hem.init_optimizer(args)
        d_opt = hem.init_optimizer(args)
        g_tower_grads = []
        d_tower_grads = []
        global_step = tf.train.get_global_step()



        # sess = tf.Session(config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
        # new_saver = tf.train.import_meta_graph(
        #     '/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1/checkpoint-4.meta', import_scope='estimator')
        # new_saver.restore(sess, tf.train.latest_checkpoint('/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1'))
        #
        # # estimator_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
        # # print('estimator_vars:', estimator_vars)
        #
        # # print('all ops!')
        # # for op in tf.get_default_graph().get_operations():
        # #     if 'l8' in str(op.name):
        # #         print(str(op.name))
        #
        #
        # # sess.graph
        # # graph = tf.get_default_graph()
        # estimator_tower0 = sess.graph.as_graph_element('estimator/tower_0/model/l8/add').outputs[0]
        # estimator_tower1 = sess.graph.as_graph_element('estimator/tower_1/model/l8/add').outputs[0]
        # self.estimator_placeholder = sess.graph.as_graph_element('estimator/input_pipeline/Placeholder') #.outputs[0]
        # print('PLACEHOLDER:', self.estimator_placeholder)
        # print('estimator_tower0:', estimator_tower0)
        # print('estimator_tower1:', estimator_tower1)
        # estimator_tower0 = tf.stop_gradient(estimator_tower0)
        # estimator_tower1 = tf.stop_gradient(estimator_tower1)
        # sess.close()


        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size):
            with tf.variable_scope('input_preprocess'):
                # split inputs and rescale
                x = hem.rescale(x_y[0], (0, 1), (-1, 1))
                y = hem.rescale(x_y[1], (0, 1), (-1, 1))


                # if args.g_arch == 'E2':
                y = hem.crop_to_bounding_box(y, 16, 16, 32, 32)
                y = tf.reshape(y, (-1, 1, 32, 32))
                x_loc = x_y[2]
                y_loc = x_y[3]
                scene_image = x_y[4]
                mean_depth = tf.stop_gradient(estimator.output_layer)
                # print('mean_depth_layer:', estimator.output_layer)
                # mean_depth = estimator(scene_image)
                # mean_depth = tf.expand_dims(mean_depth, axis=-1)
                # mean_depth = tf.expand_dims(mean_depth, axis=-1)

                mean_depth_channel = tf.stack([mean_depth] * 64, axis=2)
                mean_depth_channel = tf.stack([mean_depth_channel] * 64, axis=3)
                # mean_depth_channel = tf.squeeze(mean_depth_channel)
                # print('mean_depth_layer99:', mean_depth_channel)

                # mean_depth_channel = tf.ones_like(x_loc) * mean_depth




                # print('x', x)
                # print('x_loc', x_loc)
                # print('y_loc', y_loc)
                # print('mean_depth_channel', mean_depth_channel)
                x = tf.concat([x, x_loc, y_loc, mean_depth_channel], axis=1)
                # print('x shape:',  x)

                # create repeated image tensors for sampling
                x_sample = tf.stack([x[0]] * args.batch_size)
                y_sample = tf.stack([y[0]] * args.batch_size)
                # shuffled x for variance calculation
                x_shuffled = tf.random_shuffle(x)
                y_shuffled = y
                # noise vector for testing
                x_noise = tf.random_uniform(tf.stack([tf.Dimension(args.batch_size), x.shape[1], x.shape[2], x.shape[3]]), minval=-1.0, maxval=1.0)

            g_arch = {'E2': experimental_sampler.generatorE2}
            d_arch = {'E2': experimental_sampler.discriminatorE2}

            # create model
            with tf.variable_scope('generator'):
                g_func = g_arch[args.g_arch]
                g = g_func(x, args, reuse=(gpu_id > 0))
                g_sampler = g_func(x_sample, args, reuse=True)
                g_shuffle = g_func(x_shuffled, args, reuse=True)
                g_noise = g_func(x_noise, args, reuse=True)
            with tf.variable_scope('discriminator'):
                d_func = d_arch[args.d_arch]
                d_real, d_real_logits = d_func(x, y, args, reuse=(gpu_id > 0))
                d_fake, d_fake_logits = d_func(x, g, args, reuse=True)

            # calculate losses
            g_loss, d_loss = experimental_sampler.loss(d_real, d_real_logits, d_fake, d_fake_logits, x, g, y, None, args, reuse=(gpu_id > 0))
            # calculate gradients
            g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
            d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
            g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params))
            d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params))
            # only need one batchnorm update (ends up being updates for last tower)
            batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)
            # TODO: do we need to do this update for batchrenorm? for instance renorm?

        # average and apply gradients
        g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics)
        d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics)
        g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)
        d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(g_grads, name='g_gradients')
        hem.summarize_gradients(d_grads, name='d_gradients')
        hem.summarize_layers('g_activations', [l for l in tf.get_collection('conv_layers') if 'generator' in l.name], montage=True)
        hem.summarize_layers('d_activations', [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name], montage=True)
        experimental_sampler.montage_summaries(x, y, g, x_sample, y_sample, g_sampler, x_noise, g_noise, x_shuffled, y_shuffled, g_shuffle, args)
        experimental_sampler.sampler_summaries(y_sample, g_sampler, g_noise, y_shuffled, g_shuffle, args)

        # training ops
        with tf.control_dependencies(batchnorm_updates):
            self.g_train_op = g_apply_grads
        self.d_train_op = d_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
Esempio n. 6
0
    def __init__(self, x_y, args):
        # init/setup

        # wgan training
        if args.training_version == 'wgan':
            g_opt = tf.train.RMSPropOptimizer(args.g_lr)
            d_opt = tf.train.AdamOptimizer(args.d_lr)
        else:
            g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2)
            d_opt = tf.train.AdamOptimizer(args.d_lr, args.d_beta1, args.d_beta2)
        g_tower_grads = []
        d_tower_grads = []
        global_step = tf.train.get_global_step()

        self.x = []
        self.y = []
        self.y_hat = []
        self.g = []

        self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))
        # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29))

        # foreach gpu...
        for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size):
            with tf.variable_scope('input_preprocess'):
                # split inputs and rescale
                x = tf.identity(x_y[0], name='tower_{}_x'.format(gpu_id))
                y = tf.identity(x_y[1], name='tower_{}_y'.format(gpu_id))

                # re-attach shape info
                x = tf.reshape(x, (args.batch_size, 3, 65, 65))
                # rescale from [0,1] to actual world depth
                y = y * 10.0
                y = hem.crop_to_bounding_box(y, 17, 17, 29, 29)
                # re-attach shape info
                y = tf.reshape(y, (args.batch_size, 1, 29, 29))
                y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True)
                y_bar = tf.identity(y_bar, name='tower_{}_y_bar'.format(gpu_id))


            # create model
            with tf.variable_scope('generator'):
                if args.model_version == 'baseline':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g
                    y_0 = g_0
                elif args.model_version == 'mean_adjusted':
                    g = self.g_baseline(x, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                elif args.model_version == 'mean_provided':
                    g = self.g_mean_provided(x, y_bar, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                elif args.model_version == 'mean_provided2':
                    g = self.g_mean_provided2(x, y_bar, args, reuse=(gpu_id > 0))
                    g_0 = tf.zeros_like(g)
                    y_hat = g + y_bar
                    y_0 = g_0 + y_bar
                g = tf.identity(g, 'tower_{}_g'.format(gpu_id))
                g_0 = tf.identity(g_0, 'tower_{}_g0'.format(gpu_id))
                y_hat = tf.identity(y_hat, 'tower_{}_y_hat'.format(gpu_id))
                y_0 = tf.identity(y_0, 'tower_{}_y0'.format(gpu_id))


            with tf.variable_scope('discriminator'):
                if args.model_version == 'baseline':
                    d_fake, d_fake_logits = self.d_baseline(x, y_hat, args, reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_baseline(x, y, args, reuse=True)
                elif args.model_version == 'mean_adjusted':
                    d_fake, d_fake_logits = self.d_baseline(x, y_hat - y_bar, args, reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_baseline(x, y - y_bar, args, reuse=True)
                elif args.model_version == 'mean_provided':
                    d_fake, d_fake_logits = self.d_mean_provided(x, y_hat - y_bar, y_bar, args, reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_mean_provided(x, y - y_bar, y_bar, args, reuse=True)
                elif args.model_version == 'mean_provided2':
                    d_fake, d_fake_logits = self.d_mean_provided2(x, y_hat - y_bar, y_bar, args, reuse=(gpu_id > 0))
                    d_real, d_real_logits = self.d_mean_provided2(x, y - y_bar, y_bar, args, reuse=True)

                d_fake = tf.identity(d_fake, 'tower_{}_d_fake'.format(gpu_id))
                d_real = tf.identity(d_real, 'tower_{}_d_real'.format(gpu_id))
                d_fake_logits = tf.identity(d_fake_logits, 'tower_{}_d_fake_logits'.format(gpu_id))
                d_real_logits = tf.identity(d_real_logits, 'tower_{}_d_real_logits'.format(gpu_id))

            self.g.append(g)
            self.y_hat.append(y_hat)
            self.y.append(y)
            self.x.append(x)

            # calculate losses
            g_loss, d_loss = self.loss(d_real, d_real_logits, d_fake, d_fake_logits, args, reuse=(gpu_id > 0))
            # calculate gradients
            g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
            d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
            g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params))
            d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params))

        # average and apply gradients
        g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics)
        d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics)
        g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)
        d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step)

        # add summaries
        hem.summarize_losses()
        hem.summarize_gradients(g_grads, name='g_gradients')
        hem.summarize_gradients(d_grads, name='d_gradients')
        generator_layers = [l for l in tf.get_collection('conv_layers') if 'generator' in l.name]
        discriminator_layers = [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name]
        hem.summarize_layers('g_activations', generator_layers, montage=True)
        hem.summarize_layers('d_activations', discriminator_layers, montage=True)
        self.montage_summaries(x, y, g, y_hat, args)
        self.metric_summaries(x, y, g, y_hat, args, name='y_hat')
        self.metric_summaries(x, y, g_0, y_0, args, name='y_0')
        self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean')


        # training ops
        if args.training_version == 'wgan':
            clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in d_params]
            clip_G = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in g_params]
            with tf.control_dependencies(clip_D):
                self.d_train_op = d_apply_grads
            with tf.control_dependencies(clip_G):
                self.g_train_op = g_apply_grads
        else:
            self.g_train_op = g_apply_grads
            self.d_train_op = d_apply_grads
        self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))