Esempio n. 1
0
def top(input, filter, bias, ):
    input_extent_3_required_s = (((((final_extent_2 + 31)//32) * final_extent_3) + -1)//hcl.select(((final_extent_2 + 31)//32) > 1, ((final_extent_2 + 31)//32), 1))
    final_total_extent_1 = (hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_1) * hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_0))
    final_total_extent_2 = (final_total_extent_1 * hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_2))
    final_total_extent_3 = (final_total_extent_2 * hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_3))
    f_conv_n_extent_realized_s = hcl.select(hcl.select((((final_extent_2 * final_extent_3) + -1)//hcl.select(final_extent_2 > 1, final_extent_2, 1)) > (final_extent_3 + -1), (((final_extent_2 * final_extent_3) + -1)//hcl.select(final_extent_2 > 1, final_extent_2, 1)), (final_extent_3 + -1)) > (((((final_extent_2 + 31)//32) * final_extent_3) + -1)//(hcl.select(((final_extent_2 + -1)//32) > 0, ((final_extent_2 + -1)//32), 0) + 1)), hcl.select((((final_extent_2 * final_extent_3) + -1)//hcl.select(final_extent_2 > 1, final_extent_2, 1)) > (final_extent_3 + -1), (((final_extent_2 * final_extent_3) + -1)//hcl.select(final_extent_2 > 1, final_extent_2, 1)), (final_extent_3 + -1)), (((((final_extent_2 + 31)//32) * final_extent_3) + -1)//(hcl.select(((final_extent_2 + -1)//32) > 0, ((final_extent_2 + -1)//32), 0) + 1)))
    f_conv_z_extent_realized = hcl.select(((hcl.select(((final_extent_2 + -1)//32) > 0, ((final_extent_2 + -1)//32), 0) * 32) + 32) > final_extent_2, ((hcl.select(((final_extent_2 + -1)//32) > 0, ((final_extent_2 + -1)//32), 0) * 32) + 32), final_extent_2)
    f_conv = hcl.compute((final_extent_0, ((((final_extent_1 + -1)//32) * 32) + 32), f_conv_z_extent_realized, (f_conv_n_extent_realized_s + 1)), lambda x, y, z, w: 0, name = "f_conv", dtype = hcl.Float(bits = 32))
    with hcl.Stage("f_conv"):
        with hcl.for_(0, (final_extent_2 * final_extent_3), name = "f_conv_s0_z_par") as f_conv_s0_z_par:
            with hcl.for_(final_min_1, final_extent_1, name = "f_conv_s0_y") as f_conv_s0_y:
                with hcl.for_(final_min_0, final_extent_0, name = "f_conv_s0_x") as f_conv_s0_x:
                    f_conv[f_conv_s0_x, f_conv_s0_y, ((f_conv_s0_z_par % hcl.select(final_extent_2 > 1, final_extent_2, 1)) + final_min_2), ((f_conv_s0_z_par//hcl.select(final_extent_2 > 1, final_extent_2, 1)) + final_min_3)] = bias[((f_conv_s0_z_par % hcl.select(final_extent_2 > 1, final_extent_2, 1)) + final_min_2)]
        with hcl.for_(0, (((final_extent_2 + 31)//32) * final_extent_3), name = "f_conv_s1_z_z_par") as f_conv_s1_z_z_par:
            f_conv_s1_z_z_t_base_s = (f_conv_s1_z_z_par % hcl.select(((final_extent_2 + 31)//32) > 1, ((final_extent_2 + 31)//32), 1))
            with hcl.for_(0, 32, name = "f_conv_s1_r__z") as f_conv_s1_r__z:
                with hcl.for_(0, ((final_extent_1 + 31)//32), name = "f_conv_s1_y_y") as f_conv_s1_y_y:
                    with hcl.for_(0, 32, name = "f_conv_s1_z_z_t") as f_conv_s1_z_z_t:
                        with hcl.for_(0, 32, name = "f_conv_s1_y_y_t") as f_conv_s1_y_y_t:
                            with hcl.for_(final_min_0, final_extent_0, name = "f_conv_s1_x") as f_conv_s1_x:
                                with hcl.for_(0, 3, name = "f_conv_s1_r__y_r21") as f_conv_s1_r__y_r21:
                                    with hcl.for_(0, 3, name = "f_conv_s1_r__x_r20") as f_conv_s1_r__x_r20:
                                        t51_s = (f_conv_s1_z_z_par//hcl.select(((final_extent_2 + 31)//32) > 1, ((final_extent_2 + 31)//32), 1))
                                        f_conv[f_conv_s1_x, (((f_conv_s1_y_y * 32) + final_min_1) + f_conv_s1_y_y_t), (((f_conv_s1_z_z_t_base_s * 32) + final_min_2) + f_conv_s1_z_z_t), ((f_conv_s1_z_z_par//hcl.select(((final_extent_2 + 31)//32) > 1, ((final_extent_2 + 31)//32), 1)) + final_min_3)] = (f_conv[f_conv_s1_x, (((f_conv_s1_y_y * 32) + final_min_1) + f_conv_s1_y_y_t), (((f_conv_s1_z_z_t_base_s * 32) + final_min_2) + f_conv_s1_z_z_t), (final_min_3 + t51_s)] + (filter[f_conv_s1_r__x_r20, f_conv_s1_r__y_r21, f_conv_s1_r__z, (((f_conv_s1_z_z_t_base_s * 32) + final_min_2) + f_conv_s1_z_z_t)] * input[(f_conv_s1_r__x_r20 + f_conv_s1_x), ((((f_conv_s1_y_y * 32) + final_min_1) + f_conv_s1_y_y_t) + f_conv_s1_r__y_r21), f_conv_s1_r__z, (final_min_3 + t51_s)]))
    final = hcl.compute((64, 64, 32, 4), lambda x, y, z, w: 0, name = "final", dtype = hcl.Float(bits = 32))
    with hcl.Stage("final"):
        with hcl.for_(final_min_3, final_extent_3, name = "final_s0_n") as final_s0_n:
            with hcl.for_(final_min_2, final_extent_2, name = "final_s0_z") as final_s0_z:
                with hcl.for_(final_min_1, final_extent_1, name = "final_s0_y") as final_s0_y:
                    with hcl.for_(final_min_0, final_extent_0, name = "final_s0_x") as final_s0_x:
                        final[final_s0_x, final_s0_y, final_s0_z, final_s0_n] = hcl.select(f_conv[final_s0_x, final_s0_y, final_s0_z, final_s0_n] > hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.000000), f_conv[final_s0_x, final_s0_y, final_s0_z, final_s0_n], hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.000000))
    return final
Esempio n. 2
0
 def kernel_select(a, b, c, d):
     use_imm = hcl.scalar(1)
     with hcl.for_(0, 10, name="i") as i:
         src = hcl.select(use_imm == 1, hcl.cast(hcl.Int(16),
                                                 (c[i] + b[i])),
                          hcl.cast(hcl.Int(32), (c[i] - b[i])))
         dst = hcl.cast(hcl.Int(32), (2 * (c[i] + b[i])))
         d[i] = hcl.select(dst >= (-1 * src),
                           hcl.select(dst <= src, a[i], src), (-1 * src))
Esempio n. 3
0
def top(input, ):
    final_total_extent_1 = (
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_1) *
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_0))
    max_local = hcl.compute((final_extent_0, final_extent_1),
                            lambda x, y: 0,
                            name="max_local",
                            dtype=hcl.UInt(bits=16))
    with hcl.Stage("max_local"):
        with hcl.for_(final_min_1, final_extent_1,
                      name="max_local_s0_y") as max_local_s0_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="max_local_s0_x") as max_local_s0_x:
                maximum = hcl.compute((1, 1),
                                      lambda x, y: 0,
                                      name="maximum",
                                      dtype=hcl.UInt(bits=16))
                with hcl.Stage("maximum"):
                    maximum[max_local_s0_x,
                            max_local_s0_y] = hcl.cast(dtype=hcl.UInt(bits=16),
                                                       expr=0)
                    with hcl.for_(
                            0, 3,
                            name="maximum_s1_box__y") as maximum_s1_box__y:
                        with hcl.for_(
                                0, 3,
                                name="maximum_s1_box__x") as maximum_s1_box__x:
                            maximum[max_local_s0_x,
                                    max_local_s0_y] = hcl.select(
                                        maximum[max_local_s0_x, max_local_s0_y]
                                        > input[(max_local_s0_x +
                                                 maximum_s1_box__x),
                                                (max_local_s0_y +
                                                 maximum_s1_box__y)],
                                        maximum[max_local_s0_x,
                                                max_local_s0_y],
                                        input[(max_local_s0_x +
                                               maximum_s1_box__x),
                                              (max_local_s0_y +
                                               maximum_s1_box__y)])
                max_local[max_local_s0_x,
                          max_local_s0_y] = maximum[max_local_s0_x,
                                                    max_local_s0_y]
    final = hcl.compute((640, 480),
                        lambda x, y: 0,
                        name="final",
                        dtype=hcl.UInt(bits=16))
    with hcl.Stage("final"):
        with hcl.for_(final_min_1, final_extent_1,
                      name="final_s0_y") as final_s0_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="final_s0_x") as final_s0_x:
                final[final_s0_x, final_s0_y] = max_local[final_s0_x,
                                                          final_s0_y]
    return final
Esempio n. 4
0
    def algo(A, B):
        def f_mutate(i, j):
            factor = hcl.scalar(B[0][0][13:11], name="factor")
            idx = hcl.scalar(B[0][0][11:0], dtype=hcl.UInt(16), name="idx")
            idx += i * hcl.cast(hcl.UInt(16), factor.v)
            A[idx][j] = B[idx][j]

        bound = hcl.scalar(5, dtype=hcl.Int(32))
        domain = (hcl.cast(hcl.UInt(32),
                           bound.v), hcl.cast(hcl.UInt(32), bound.v))
        hcl.mutate(domain, f_mutate)
def stateToIndex(sVals, iVals, bounds, ptsEachDim):
    iVals[0] = ((sVals[0] - bounds[0, 0]) /
                (bounds[0, 1] - bounds[0, 0])) * (ptsEachDim[0] - 1)
    iVals[1] = ((sVals[1] - bounds[1, 0]) /
                (bounds[1, 1] - bounds[1, 0])) * (ptsEachDim[1] - 1)
    iVals[2] = ((sVals[2] - bounds[2, 0]) /
                (bounds[2, 1] - bounds[2, 0])) * (ptsEachDim[2] - 1)
    # NOTE: add 0.5 to simulate rounding
    iVals[0] = hcl.cast(hcl.Int(), iVals[0] + 0.5)
    iVals[1] = hcl.cast(hcl.Int(), iVals[1] + 0.5)
    iVals[2] = hcl.cast(hcl.Int(), iVals[2] + 0.5)
Esempio n. 6
0
def full_like(array, fill_val, dtype=None, name='full_like'):
    if dtype is None:
        dtype = array.dtype
    hcl.init(dtype)
    return hcl.compute(array.shape,
                       lambda *x: hcl.cast(dtype, fill_val),
                       name=name)
Esempio n. 7
0
def full(shape=(1, ), fill_val=1, dtype=dtype, name='full'):
    if isinstance(shape, list):
        shape = tuple(shape)
    return hcl.compute(shape,
                       lambda *x: hcl.cast(dtype, fill_val),
                       name=name,
                       dtype=dtype)
Esempio n. 8
0
 def kernel(A, B):
     C = hcl.compute(A.shape,
                     lambda x: hcl.cast(hcl.UInt(bw), A[x]) << sl,
                     dtype=hcl.UInt(bw))
     D = hcl.compute(A.shape, lambda x: B[x] + C[x], dtype=hcl.UInt(bw))
     E = hcl.compute(A.shape, lambda x: A[x])
     return E
Esempio n. 9
0
def prelu(out, x, alpha):
    assert len(x.shape) == 2, "only support 2-dim PReLU"
    m, n = x.shape
    k = hcl.reduce_axis(0, n)
    return hcl.update(
        out, lambda i, j: hcl.select(x[
            i, j] < 0, hcl.cast(x.dtype, alpha[j] * x[i, j]), x[i, j]))
Esempio n. 10
0
def thresholdedrelu(out, x, theta):
    assert len(x.shape) == 2, "only support 2-dim ThresholdedReLU"
    m, n = x.shape
    k = hcl.reduce_axis(0, n)
    return hcl.update(
        out, lambda i, j: hcl.select(x[i, j] > theta, x[i, j],
                                     hcl.cast(x.dtype, 0)))
Esempio n. 11
0
 def Sigmoid(exponent):
     ret = hcl.scalar(0.0, "sigmoid", FTYPE)
     with hcl.if_(exponent > hcl.cast(FTYPE, 4.0)):
         ret[0] = 1.0
     with hcl.elif_(exponent < hcl.cast(FTYPE, -4.0)):
         ret[0] = 0.0
     with hcl.else_():
         with hcl.if_(exponent < hcl.cast(FTYPE, 0.0)):
             num = hcl.scalar(0, dtype=hcl.UFixed(18, 8))
             num[0][18:0] = exponent[29:11]
             num[0] = ~(num[0] << 8) + 1
             index = 2047.0 - num[0]
             ret[0] = lut[hcl.cast(hcl.Int(32), index)]
         with hcl.else_():
             index = exponent[21:11]
             ret[0] = lut[hcl.cast(hcl.Int(32), index)]
     return ret[0]
Esempio n. 12
0
def zeros(shape=(1, ), dtype=dtype, name='zeros'):
    dtype = hcl.dtype_to_hcl(dtype)
    shape = list(shape)
    for i in range(len(shape)):
        if hasattr(shape[i], 'value'):
            shape[i] = shape[i].value
    return hcl.compute(tuple(shape),
                       lambda *x: hcl.cast(dtype, 0),
                       name=name,
                       dtype=dtype)
Esempio n. 13
0
def top(input, ):
    final_total_extent_1 = (
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_1) *
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_0))
    mean_local = hcl.compute((final_extent_0, final_extent_1),
                             lambda x, y: 0,
                             name="mean_local",
                             dtype=hcl.UInt(bits=16))
    with hcl.Stage("mean_local"):
        with hcl.for_(final_min_1, final_extent_1,
                      name="mean_local_s0_y") as mean_local_s0_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="mean_local_s0_x") as mean_local_s0_x:
                mean_local[mean_local_s0_x,
                           mean_local_s0_y] = hcl.cast(dtype=hcl.UInt(bits=16),
                                                       expr=0)
        with hcl.for_(final_min_1, final_extent_1,
                      name="mean_local_s1_y") as mean_local_s1_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="mean_local_s1_x") as mean_local_s1_x:
                with hcl.for_(
                        0, 3,
                        name="mean_local_s1_box__y") as mean_local_s1_box__y:
                    with hcl.for_(0, 3, name="mean_local_s1_box__x"
                                  ) as mean_local_s1_box__x:
                        mean_local[mean_local_s1_x, mean_local_s1_y] = (
                            mean_local[mean_local_s1_x, mean_local_s1_y] +
                            (input[(mean_local_s1_box__x + mean_local_s1_x),
                                   (mean_local_s1_box__y + mean_local_s1_y)] //
                             hcl.cast(dtype=hcl.UInt(bits=16), expr=9)))
    final = hcl.compute((6418, 4818),
                        lambda x, y: 0,
                        name="final",
                        dtype=hcl.UInt(bits=16))
    with hcl.Stage("final"):
        with hcl.for_(final_min_1, final_extent_1,
                      name="final_s0_y") as final_s0_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="final_s0_x") as final_s0_x:
                final[final_s0_x, final_s0_y] = mean_local[final_s0_x,
                                                           final_s0_y]
    return final
Esempio n. 14
0
def prelu(data, alpha, axis=1):
    def _axis_ind(axis, ind):
        ind = ind[0]
        new_ind = []
        for i in range(len(ind)):
            if i == axis:
                new_ind = ind[i]
        return tuple(new_ind)

    return hcl.compute(
        data.shape, lambda *x: hcl.select(
            data[x] < 0,
            hcl.cast(data.dtype, alpha[_axis_ind(axis, x)] * data[x]), data[x])
    )
Esempio n. 15
0
def top(
    A,
    B,
):
    final_total_extent_1 = (
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_1) *
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_0))
    prod = hcl.compute((final_extent_0, final_extent_1),
                       lambda x, y: 0,
                       name="prod",
                       dtype=hcl.Float(bits=32))
    with hcl.Stage("prod"):
        with hcl.for_(final_min_1, final_extent_1,
                      name="prod_s0_y") as prod_s0_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="prod_s0_x") as prod_s0_x:
                prod[prod_s0_x, prod_s0_y] = hcl.cast(dtype=hcl.Float(bits=32),
                                                      expr=0.000000)
        with hcl.for_(final_min_1, final_extent_1,
                      name="prod_s1_y") as prod_s1_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="prod_s1_x") as prod_s1_x:
                with hcl.for_(0, 1024, name="prod_s1_r__x") as prod_s1_r__x:
                    prod[prod_s1_x, prod_s1_y] = (prod[prod_s1_x, prod_s1_y] +
                                                  (A[prod_s1_x, prod_s1_r__x] *
                                                   B[prod_s1_r__x, prod_s1_y]))
    final = hcl.compute((1024, 1024),
                        lambda x, y: 0,
                        name="final",
                        dtype=hcl.Float(bits=32))
    with hcl.Stage("final"):
        with hcl.for_(final_min_1, final_extent_1,
                      name="final_s0_y") as final_s0_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="final_s0_x") as final_s0_x:
                final[final_s0_x, final_s0_y] = prod[final_s0_x, final_s0_y]
    return final
Esempio n. 16
0
def top(input, ):
    final_total_extent_1 = (hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_1) * hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_0))
    final_total_extent_2 = (final_total_extent_1 * hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_2))
    linear = hcl.compute(((final_extent_0 + 2), (final_extent_1 + 2), final_extent_2), lambda x, y, z: 0, name = "linear", dtype = hcl.Float(bits = 32))
    with hcl.Stage("linear"):
        with hcl.for_(final_min_2, final_extent_2, name = "linear_s0_c") as linear_s0_c:
            with hcl.for_(final_min_1, (final_extent_1 + 2), name = "linear_s0_y") as linear_s0_y:
                with hcl.for_(final_min_0, (final_extent_0 + 2), name = "linear_s0_x") as linear_s0_x:
                    t4 = input[linear_s0_x, linear_s0_y, linear_s0_c]
                    linear[linear_s0_x, linear_s0_y, linear_s0_c] = hcl.select((hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.040450) < t4), hcl.power(((t4 * hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.947867)) + hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.052133)), hcl.cast(dtype = hcl.Float(bits = 32), expr = 2.400000)), (t4 * hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.077399)))
    blur_x = hcl.compute((final_extent_0, (final_extent_1 + 2), final_extent_2), lambda x, y, z: 0, name = "blur_x", dtype = hcl.Float(bits = 32))
    with hcl.Stage("blur_x"):
        with hcl.for_(final_min_2, final_extent_2, name = "blur_x_s0_c") as blur_x_s0_c:
            with hcl.for_(final_min_1, (final_extent_1 + 2), name = "blur_x_s0_y") as blur_x_s0_y:
                with hcl.for_(final_min_0, final_extent_0, name = "blur_x_s0_x") as blur_x_s0_x:
                    blur_x[blur_x_s0_x, blur_x_s0_y, blur_x_s0_c] = ((linear[(blur_x_s0_x + 2), blur_x_s0_y, blur_x_s0_c] + (linear[blur_x_s0_x, blur_x_s0_y, blur_x_s0_c] + linear[(blur_x_s0_x + 1), blur_x_s0_y, blur_x_s0_c])) * hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.333333))
    blur_y = hcl.compute((final_extent_0, final_extent_1, final_extent_2), lambda x, y, z: 0, name = "blur_y", dtype = hcl.Float(bits = 32))
    with hcl.Stage("blur_y"):
        with hcl.for_(final_min_2, final_extent_2, name = "blur_y_s0_c") as blur_y_s0_c:
            with hcl.for_(final_min_1, final_extent_1, name = "blur_y_s0_y") as blur_y_s0_y:
                with hcl.for_(final_min_0, final_extent_0, name = "blur_y_s0_x") as blur_y_s0_x:
                    blur_y[blur_y_s0_x, blur_y_s0_y, blur_y_s0_c] = ((blur_x[blur_y_s0_x, (blur_y_s0_y + 2), blur_y_s0_c] + (blur_x[blur_y_s0_x, blur_y_s0_y, blur_y_s0_c] + blur_x[blur_y_s0_x, (blur_y_s0_y + 1), blur_y_s0_c])) * hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.333333))
    srgb = hcl.compute((final_extent_0, final_extent_1, final_extent_2), lambda x, y, z: 0, name = "srgb", dtype = hcl.Float(bits = 32))
    with hcl.Stage("srgb"):
        with hcl.for_(final_min_2, final_extent_2, name = "srgb_s0_c") as srgb_s0_c:
            with hcl.for_(final_min_1, final_extent_1, name = "srgb_s0_y") as srgb_s0_y:
                with hcl.for_(final_min_0, final_extent_0, name = "srgb_s0_x") as srgb_s0_x:
                    t5 = blur_y[srgb_s0_x, srgb_s0_y, srgb_s0_c]
                    srgb[srgb_s0_x, srgb_s0_y, srgb_s0_c] = hcl.select((hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.003131) < t5), ((hcl.power(t5, hcl.cast(dtype = hcl.Float(bits = 32), expr = 0.416667)) * hcl.cast(dtype = hcl.Float(bits = 32), expr = 1.055000)) + hcl.cast(dtype = hcl.Float(bits = 32), expr = -0.055000)), (t5 * hcl.cast(dtype = hcl.Float(bits = 32), expr = 12.920000)))
    final = hcl.compute((766, 1278, 3), lambda x, y, z: 0, name = "final", dtype = hcl.Float(bits = 32))
    with hcl.Stage("final"):
        with hcl.for_(final_min_2, final_extent_2, name = "final_s0_c") as final_s0_c:
            with hcl.for_(final_min_1, final_extent_1, name = "final_s0_y") as final_s0_y:
                with hcl.for_(final_min_0, final_extent_0, name = "final_s0_x") as final_s0_x:
                    final[final_s0_x, final_s0_y, final_s0_c] = srgb[final_s0_x, final_s0_y, final_s0_c]
    return final
Esempio n. 17
0
 def _dilate(*indices):
     not_zero = []
     index_tuple = []
     for i in range(n):
         if strides[i] != 1:
             index_tuple.append(indices[i] / strides[i])
             not_zero.append((indices[i] % strides[i]).equal(0))
         else:
             index_tuple.append(indices[i])
     if not_zero:
         not_zero = tvm.api.all(*not_zero)
         if not_zero:
             return data(*index_tuple)
         else:
             return hcl.cast(data.dtype, 0.0)
     return data(*index_tuple)
Esempio n. 18
0
def top(input, ):
    final_total_extent_1 = (hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_1) * hcl.cast(dtype = hcl.Int(bits = 64), expr = final_extent_0))
    blur_x = hcl.compute((final_extent_0, (final_extent_1 + 2)), lambda x, y: 0, name = "blur_x", dtype = hcl.UInt(bits = 16))
    with hcl.Stage("blur_x"):
        with hcl.for_(final_min_1, (final_extent_1 + 2), name = "blur_x_s0_y") as blur_x_s0_y:
            with hcl.for_(final_min_0, final_extent_0, name = "blur_x_s0_x") as blur_x_s0_x:
                blur_x[blur_x_s0_x, blur_x_s0_y] = ((input[(blur_x_s0_x + 2), blur_x_s0_y] + (input[blur_x_s0_x, blur_x_s0_y] + input[(blur_x_s0_x + 1), blur_x_s0_y]))//hcl.cast(dtype = hcl.UInt(bits = 16), expr = 3))
    blur_y = hcl.compute((final_extent_0, final_extent_1), lambda x, y: 0, name = "blur_y", dtype = hcl.UInt(bits = 16))
    with hcl.Stage("blur_y"):
        with hcl.for_(final_min_1, final_extent_1, name = "blur_y_s0_y") as blur_y_s0_y:
            with hcl.for_(final_min_0, final_extent_0, name = "blur_y_s0_x") as blur_y_s0_x:
                blur_y[blur_y_s0_x, blur_y_s0_y] = ((blur_x[blur_y_s0_x, (blur_y_s0_y + 2)] + (blur_x[blur_y_s0_x, blur_y_s0_y] + blur_x[blur_y_s0_x, (blur_y_s0_y + 1)]))//hcl.cast(dtype = hcl.UInt(bits = 16), expr = 3))
    final = hcl.compute((640, 480), lambda x, y: 0, name = "final", dtype = hcl.UInt(bits = 16))
    with hcl.Stage("final"):
        with hcl.for_(final_min_1, final_extent_1, name = "final_s0_y") as final_s0_y:
            with hcl.for_(final_min_0, final_extent_0, name = "final_s0_x") as final_s0_x:
                final[final_s0_x, final_s0_y] = blur_y[final_s0_x, final_s0_y]
    return final
Esempio n. 19
0
def zeros(in_shape, dtype=dtype, name='zeros'):
    return hcl.compute(in_shape, lambda *x: hcl.cast(dtype, 0), name=name)
Esempio n. 20
0
def top(input, filter, bias):
    f_conv = hcl.compute(
        (output_extent_0, output_extent_1, output_extent_2, output_extent_3),
        lambda x, y, z, n: 0,
        name="f_conv",
        dtype=hcl.Float(bits=32))
    with hcl.Stage("f_conv"):
        with hcl.for_(output_min_3, output_extent_3,
                      name="f_conv_s0_n") as f_conv_s0_n:
            with hcl.for_(output_min_2, output_extent_2,
                          name="f_conv_s0_c") as f_conv_s0_z:
                with hcl.for_(output_min_1,
                              output_extent_1,
                              name="f_conv_s0_y") as f_conv_s0_y:
                    with hcl.for_(output_min_0,
                                  output_extent_0,
                                  name="f_conv_s0_x") as f_conv_s0_x:
                        f_conv[f_conv_s0_x, f_conv_s0_y, f_conv_s0_z,
                               f_conv_s0_n] = bias[f_conv_s0_z]

        with hcl.for_(output_min_3, output_extent_3,
                      name="f_conv_s1_n") as f_conv_s1_n:
            with hcl.for_(output_min_2, output_extent_2,
                          name="f_conv_s1_c") as f_conv_s1_z:
                with hcl.for_(output_min_1,
                              output_extent_1,
                              name="f_conv_s1_y") as f_conv_s1_y:
                    with hcl.for_(output_min_0,
                                  output_extent_0,
                                  name="f_conv_s1_x") as f_conv_s1_x:
                        with hcl.for_(0, 32,
                                      name="f_conv_s1_r__z") as f_conv_s1_r__z:
                            with hcl.for_(
                                    0, 3,
                                    name="f_conv_s1_r__y") as f_conv_s1_r__y:
                                with hcl.for_(0, 3, name="f_conv_s1_r__x"
                                              ) as f_conv_s1_r__x:
                                    f_conv[
                                        f_conv_s1_x, f_conv_s1_y, f_conv_s1_z,
                                        f_conv_s1_n] = (
                                            f_conv[f_conv_s1_x, f_conv_s1_y,
                                                   f_conv_s1_z, f_conv_s1_n] +
                                            (filter[
                                                f_conv_s1_r__x, f_conv_s1_r__y,
                                                f_conv_s1_r__z, f_conv_s1_z] *
                                             input[
                                                 (f_conv_s1_r__x +
                                                  f_conv_s1_x),
                                                 (f_conv_s1_r__y +
                                                  f_conv_s1_y), f_conv_s1_r__z,
                                                 f_conv_s1_n]))

    f_relu = hcl.compute(
        (output_extent_0, output_extent_1, output_extent_2, output_extent_3),
        lambda x, y, z, n: 0,
        name="f_conv",
        dtype=hcl.Float(bits=32))
    with hcl.Stage("f_relu"):
        with hcl.for_(output_min_3, output_extent_3,
                      name="f_relu_s0_n") as f_relu_s0_n:
            with hcl.for_(output_min_2, output_extent_2,
                          name="f_relu_s0_c") as f_relu_s0_z:
                with hcl.for_(output_min_1,
                              output_extent_1,
                              name="f_relu_s0_y") as f_relu_s0_y:
                    with hcl.for_(output_min_0,
                                  output_extent_0,
                                  name="f_relu_s0_x") as f_relu_s0_x:
                        f_relu[f_relu_s0_x, f_relu_s0_y, f_relu_s0_z,
                               f_relu_s0_n] = hcl.select(
                                   f_conv[f_relu_s0_x, f_relu_s0_y,
                                          f_relu_s0_z, f_relu_s0_n] > hcl.cast(
                                              dtype=hcl.Float(bits=32),
                                              expr=0.000000),
                                   f_conv[f_relu_s0_x, f_relu_s0_y,
                                          f_relu_s0_z, f_relu_s0_n],
                                   hcl.cast(dtype=hcl.Float(bits=32),
                                            expr=0.000000))
    return f_relu
Esempio n. 21
0
def top(
    input,
    filter,
    bias,
):
    final_total_extent_1 = (
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_1) *
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_0))
    final_total_extent_2 = (
        final_total_extent_1 *
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_2))
    final_total_extent_3 = (
        final_total_extent_2 *
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_3))
    f_conv = hcl.compute(
        (hcl.select(final_extent_0 > 4, final_extent_0,
                    4), hcl.select(final_extent_1 > 4, final_extent_1,
                                   4), final_extent_2, final_extent_3),
        lambda x, y, z, w: 0,
        name="f_conv",
        dtype=hcl.Float(bits=32))
    with hcl.Stage("f_conv"):
        with hcl.for_(final_min_3, final_extent_3,
                      name="f_conv_s0_n") as f_conv_s0_n:
            with hcl.for_(final_min_2, final_extent_2,
                          name="f_conv_s0_z") as f_conv_s0_z:
                with hcl.for_(0, ((final_extent_1 + 3) // 4),
                              name="f_conv_s0_y_y") as f_conv_s0_y_y:
                    f_conv_s0_y_yi_base_s = hcl.select(
                        (f_conv_s0_y_y * 4) < (final_extent_1 + -4),
                        (f_conv_s0_y_y * 4), (final_extent_1 + -4))
                    with hcl.for_(0, ((final_extent_0 + 3) // 4),
                                  name="f_conv_s0_x_x") as f_conv_s0_x_x:
                        f_conv_s0_x_xi_base_s = hcl.select(
                            (f_conv_s0_x_x * 4) < (final_extent_0 + -4),
                            (f_conv_s0_x_x * 4), (final_extent_0 + -4))
                        with hcl.for_(0, 4,
                                      name="f_conv_s0_y_yi") as f_conv_s0_y_yi:
                            with hcl.for_(
                                    0, 4,
                                    name="f_conv_s0_x_xi") as f_conv_s0_x_xi:
                                f_conv[((f_conv_s0_x_xi_base_s + final_min_0) +
                                        f_conv_s0_x_xi),
                                       ((f_conv_s0_y_yi_base_s + final_min_1) +
                                        f_conv_s0_y_yi), f_conv_s0_z,
                                       f_conv_s0_n] = bias[f_conv_s0_z]
        # with hcl.for_(final_min_3, final_extent_3, name = "f_conv_s1_n") as f_conv_s1_n:
        #     with hcl.for_(final_min_2, final_extent_2, name = "f_conv_s1_z") as f_conv_s1_z:
        #         with hcl.for_(final_min_1, final_extent_1, name = "f_conv_s1_y") as f_conv_s1_y:
        #             with hcl.for_(final_min_0, final_extent_0, name = "f_conv_s1_x") as f_conv_s1_x:
        #                 with hcl.for_(0, 32, name = "f_conv_s1_r__z") as f_conv_s1_r__z:
        #                     with hcl.for_(0, 3, name = "f_conv_s1_r__y") as f_conv_s1_r__y:
        #                         with hcl.for_(0, 3, name = "f_conv_s1_r__x") as f_conv_s1_r__x:
        #                             f_conv[f_conv_s1_x, f_conv_s1_y, f_conv_s1_z, f_conv_s1_n] = (f_conv[f_conv_s1_x, f_conv_s1_y, f_conv_s1_z, f_conv_s1_n] + (filter[f_conv_s1_r__x, f_conv_s1_r__y, f_conv_s1_r__z, f_conv_s1_z] * input[(f_conv_s1_r__x + f_conv_s1_x), (f_conv_s1_r__y + f_conv_s1_y), f_conv_s1_r__z, f_conv_s1_n]))

        with hcl.for_(final_min_3, final_extent_3,
                      name="f_conv_s1_n") as f_conv_s1_n:

            with hcl.for_(0, 32, name="f_conv_s1_r__z") as f_conv_s1_r__z:

                with hcl.for_(0, ((final_extent_1 + 3) // 4),
                              name="f_conv_s1_y_y") as f_conv_s1_y_y:
                    f_conv_s1_y_yi_base_s = hcl.select(
                        (f_conv_s1_y_y * 4) < (final_extent_1 + -4),
                        (f_conv_s1_y_y * 4), (final_extent_1 + -4))
                    with hcl.for_(0, ((final_extent_0 + 3) // 4),
                                  name="f_conv_s1_x_x") as f_conv_s1_x_x:
                        f_conv_s1_x_xi_base_s = hcl.select(
                            (f_conv_s1_x_x * 4) < (final_extent_0 + -4),
                            (f_conv_s1_x_x * 4), (final_extent_0 + -4))
                        with hcl.for_(0, 4,
                                      name="f_conv_s1_y_yi") as f_conv_s1_y_yi:
                            with hcl.for_(
                                    0, 4,
                                    name="f_conv_s1_x_xi") as f_conv_s1_x_xi:

                                with hcl.for_(
                                        final_min_2,
                                        final_extent_2,
                                        name="f_conv_s1_z") as f_conv_s1_z:

                                    with hcl.for_(0, 3, name="f_conv_s1_r__y"
                                                  ) as f_conv_s1_r__y:
                                        with hcl.for_(0,
                                                      3,
                                                      name="f_conv_s1_r__x"
                                                      ) as f_conv_s1_r__x:
                                            f_conv[(
                                                (f_conv_s1_x_xi_base_s +
                                                 final_min_0) + f_conv_s1_x_xi
                                            ), (
                                                (f_conv_s1_y_yi_base_s +
                                                 final_min_1) + f_conv_s1_y_yi
                                            ), f_conv_s1_z, f_conv_s1_n] = (
                                                f_conv[
                                                    ((f_conv_s1_x_xi_base_s +
                                                      final_min_0) +
                                                     f_conv_s1_x_xi),
                                                    ((f_conv_s1_y_yi_base_s +
                                                      final_min_1) +
                                                     f_conv_s1_y_yi),
                                                    f_conv_s1_z, f_conv_s1_n] +
                                                (filter[f_conv_s1_r__x,
                                                        f_conv_s1_r__y,
                                                        f_conv_s1_r__z,
                                                        f_conv_s1_z] *
                                                 input[(f_conv_s1_r__x + (
                                                     (f_conv_s1_x_xi_base_s +
                                                      final_min_0) +
                                                     f_conv_s1_x_xi)),
                                                       (f_conv_s1_r__y +
                                                        ((f_conv_s1_y_yi_base_s
                                                          + final_min_1) +
                                                         f_conv_s1_y_yi)),
                                                       f_conv_s1_r__z,
                                                       f_conv_s1_n]))
    f_relu = hcl.compute(
        (final_extent_0, final_extent_1, final_extent_2, final_extent_3),
        lambda x, y, z, w: 0,
        name="f_relu",
        dtype=hcl.Float(bits=32))
    with hcl.Stage("f_relu"):
        with hcl.for_(final_min_3, final_extent_3,
                      name="f_relu_s0_n") as f_relu_s0_n:
            with hcl.for_(final_min_2, final_extent_2,
                          name="f_relu_s0_z") as f_relu_s0_z:
                with hcl.for_(final_min_1, final_extent_1,
                              name="f_relu_s0_y") as f_relu_s0_y:
                    with hcl.for_(final_min_0,
                                  final_extent_0,
                                  name="f_relu_s0_x") as f_relu_s0_x:
                        f_relu[f_relu_s0_x, f_relu_s0_y, f_relu_s0_z,
                               f_relu_s0_n] = hcl.select(
                                   f_conv[f_relu_s0_x, f_relu_s0_y,
                                          f_relu_s0_z, f_relu_s0_n] > hcl.cast(
                                              dtype=hcl.Float(bits=32),
                                              expr=0.000000),
                                   f_conv[f_relu_s0_x, f_relu_s0_y,
                                          f_relu_s0_z, f_relu_s0_n],
                                   hcl.cast(dtype=hcl.Float(bits=32),
                                            expr=0.000000))
    final = hcl.compute((64, 64, 32, 4),
                        lambda x, y, z, w: 0,
                        name="final",
                        dtype=hcl.Float(bits=32))
    with hcl.Stage("final"):
        with hcl.for_(final_min_3, final_extent_3,
                      name="final_s0_n") as final_s0_n:
            with hcl.for_(final_min_2, final_extent_2,
                          name="final_s0_z") as final_s0_z:
                with hcl.for_(final_min_1, final_extent_1,
                              name="final_s0_y") as final_s0_y:
                    with hcl.for_(final_min_0,
                                  final_extent_0,
                                  name="final_s0_x") as final_s0_x:
                        final[final_s0_x, final_s0_y, final_s0_z,
                              final_s0_n] = f_relu[final_s0_x, final_s0_y,
                                                   final_s0_z, final_s0_n]
    return final
def stateToIndexInterpolants(Qopt, sVals, actions, bounds, ptsEachDim, interpV,
                             fillVal):
    iMin = hcl.scalar(0, "iMin")
    jMin = hcl.scalar(0, "jMin")
    kMin = hcl.scalar(0, "kMin")
    iMax = hcl.scalar(0, "iMax")
    jMax = hcl.scalar(0, "jMax")
    kMax = hcl.scalar(0, "kMax")
    c000 = hcl.scalar(fillVal[0], "c000")
    c001 = hcl.scalar(fillVal[0], "c001")
    c010 = hcl.scalar(fillVal[0], "c010")
    c011 = hcl.scalar(fillVal[0], "c011")
    c100 = hcl.scalar(fillVal[0], "c100")
    c101 = hcl.scalar(fillVal[0], "c101")
    c110 = hcl.scalar(fillVal[0], "c110")
    c111 = hcl.scalar(fillVal[0], "c111")
    c00 = hcl.scalar(0, "c00")
    c01 = hcl.scalar(0, "c01")
    c10 = hcl.scalar(0, "c10")
    c11 = hcl.scalar(0, "c11")
    c0 = hcl.scalar(0, "c0")
    c1 = hcl.scalar(0, "c1")
    ia = hcl.scalar(0, "ia")
    ja = hcl.scalar(0, "ja")
    ka = hcl.scalar(0, "ka")
    di = hcl.scalar(0, "di")
    dj = hcl.scalar(0, "dj")
    dk = hcl.scalar(0, "dk")

    # obtain unrounded index values
    ia[0] = ((sVals[0] - bounds[0, 0]) /
             (bounds[0, 1] - bounds[0, 0])) * (ptsEachDim[0] - 1)
    ja[0] = ((sVals[1] - bounds[1, 0]) /
             (bounds[1, 1] - bounds[1, 0])) * (ptsEachDim[1] - 1)
    ka[0] = ((sVals[2] - bounds[2, 0]) /
             (bounds[2, 1] - bounds[2, 0])) * (ptsEachDim[2] - 1)

    # obtain neighbouring state indeces in each direction
    with hcl.if_(ia[0] < 0):
        iMin[0] = hcl.cast(hcl.Int(), ia[0] - 1.0)
        iMax[0] = hcl.cast(hcl.Int(), ia[0])
    with hcl.else_():
        iMin[0] = hcl.cast(hcl.Int(), ia[0])
        iMax[0] = hcl.cast(hcl.Int(), ia[0] + 1.0)
    with hcl.if_(ja[0] < 0):
        jMin[0] = hcl.cast(hcl.Int(), ja[0] - 1.0)
        jMax[0] = hcl.cast(hcl.Int(), ja[0])
    with hcl.else_():
        jMin[0] = hcl.cast(hcl.Int(), ja[0])
        jMax[0] = hcl.cast(hcl.Int(), ja[0] + 1.0)
    with hcl.if_(ka[0] < 0):
        kMin[0] = hcl.cast(hcl.Int(), ka[0] - 1.0)
        kMax[0] = hcl.cast(hcl.Int(), ka[0])
    with hcl.else_():
        kMin[0] = hcl.cast(hcl.Int(), ka[0])
        kMax[0] = hcl.cast(hcl.Int(), ka[0] + 1.0)

    # obtain weights in each direction
    di[0] = ia[0] - iMin[0]
    dj[0] = ja[0] - jMin[0]
    dk[0] = ka[0] - kMin[0]

    # Obtain value of each neighbour state
    # Qopt[iMin, jMin, kMin]
    with hcl.if_(
            hcl.and_(iMin[0] < Qopt.shape[0], jMin[0] < Qopt.shape[1],
                     kMin[0] < Qopt.shape[2])):
        with hcl.if_(hcl.and_(iMin[0] >= 0, jMin[0] >= 0, kMin[0] >= 0)):
            with hcl.for_(0, actions.shape[0], name="a_") as a_:
                with hcl.if_(c000[0] < Qopt[iMin[0], jMin[0], kMin[0], a_]):
                    c000[0] = Qopt[iMin[0], jMin[0], kMin[0], a_]
    # Qopt[iMin, jMin, kMax]
    with hcl.if_(
            hcl.and_(iMin[0] < Qopt.shape[0], jMin[0] < Qopt.shape[1],
                     kMax[0] < Qopt.shape[2])):
        with hcl.if_(hcl.and_(iMin[0] >= 0, jMin[0] >= 0, kMax[0] >= 0)):
            with hcl.for_(0, actions.shape[0], name="a_") as a_:
                with hcl.if_(c001[0] < Qopt[iMin[0], jMin[0], kMax[0], a_]):
                    c001[0] = Qopt[iMin[0], jMin[0], kMax[0], a_]
    # Qopt[iMin, jMax, kMin]
    with hcl.if_(
            hcl.and_(iMin[0] < Qopt.shape[0], jMax[0] < Qopt.shape[1],
                     kMin[0] < Qopt.shape[2])):
        with hcl.if_(hcl.and_(iMin[0] >= 0, jMax[0] >= 0, kMin[0] >= 0)):
            with hcl.for_(0, actions.shape[0], name="a_") as a_:
                with hcl.if_(c010[0] < Qopt[iMin[0], jMax[0], kMin[0], a_]):
                    c010[0] = Qopt[iMin[0], jMax[0], kMin[0], a_]
    # Qopt[iMin, jMax, kMax]
    with hcl.if_(
            hcl.and_(iMin[0] < Qopt.shape[0], jMax[0] < Qopt.shape[1],
                     kMax[0] < Qopt.shape[2])):
        with hcl.if_(hcl.and_(iMin[0] >= 0, jMax[0] >= 0, kMax[0] >= 0)):
            with hcl.for_(0, actions.shape[0], name="a_") as a_:
                with hcl.if_(c011[0] < Qopt[iMin[0], jMax[0], kMax[0], a_]):
                    c011[0] = Qopt[iMin[0], jMax[0], kMax[0], a_]
    # Qopt[iMax, jMin, kMin]
    with hcl.if_(
            hcl.and_(iMax[0] < Qopt.shape[0], jMin[0] < Qopt.shape[1],
                     kMin[0] < Qopt.shape[2])):
        with hcl.if_(hcl.and_(iMax[0] >= 0, jMin[0] >= 0, kMin[0] >= 0)):
            with hcl.for_(0, actions.shape[0], name="a_") as a_:
                with hcl.if_(c100[0] < Qopt[iMax[0], jMin[0], kMin[0], a_]):
                    c100[0] = Qopt[iMax[0], jMin[0], kMin[0], a_]
    # Qopt[iMax, jMin, kMax]
    with hcl.if_(
            hcl.and_(iMax[0] < Qopt.shape[0], jMin[0] < Qopt.shape[1],
                     kMax[0] < Qopt.shape[2])):
        with hcl.if_(hcl.and_(iMax[0] >= 0, jMin[0] >= 0, kMax[0] >= 0)):
            with hcl.for_(0, actions.shape[0], name="a_") as a_:
                with hcl.if_(c101[0] < Qopt[iMax[0], jMin[0], kMax[0], a_]):
                    c101[0] = Qopt[iMax[0], jMin[0], kMax[0], a_]
    # Qopt[iMax, jMax, kMin]
    with hcl.if_(
            hcl.and_(iMax[0] < Qopt.shape[0], jMax[0] < Qopt.shape[1],
                     kMin[0] < Qopt.shape[2])):
        with hcl.if_(hcl.and_(iMax[0] >= 0, jMax[0] >= 0, kMin[0] >= 0)):
            with hcl.for_(0, actions.shape[0], name="a_") as a_:
                with hcl.if_(c110[0] < Qopt[iMax[0], jMax[0], kMin[0], a_]):
                    c110[0] = Qopt[iMax[0], jMax[0], kMin[0], a_]
    # Qopt[iMax, jMax, kMax]
    with hcl.if_(
            hcl.and_(iMax[0] < Qopt.shape[0], jMax[0] < Qopt.shape[1],
                     kMax[0] < Qopt.shape[2])):
        with hcl.if_(hcl.and_(iMax[0] >= 0, jMax[0] >= 0, kMax[0] >= 0)):
            with hcl.for_(0, actions.shape[0], name="a_") as a_:
                with hcl.if_(c111[0] < Qopt[iMax[0], jMax[0], kMax[0], a_]):
                    c111[0] = Qopt[iMax[0], jMax[0], kMax[0], a_]

    # perform linear interpolation
    c00[0] = (c000[0] * (1 - di[0])) + (c100[0] * di[0])
    c01[0] = (c001[0] * (1 - di[0])) + (c101[0] * di[0])
    c10[0] = (c010[0] * (1 - di[0])) + (c110[0] * di[0])
    c11[0] = (c011[0] * (1 - di[0])) + (c111[0] * di[0])
    c0[0] = (c00[0] * (1 - dj[0])) + (c10[0] * dj[0])
    c1[0] = (c01[0] * (1 - dj[0])) + (c11[0] * dj[0])
    interpV[0] = (c0[0] * (1 - dk[0])) + (c1[0] * dk[0])
Esempio n. 23
0
def cast(array, dtype=None, name='cast'):
    return hcl.compute(array.shape,
                       lambda *x: hcl.cast(dtype, array[x]),
                       dtype=dtype,
                       name=name)
Esempio n. 24
0
def dropout(data, rate=0.5):
    data = hcl.compute(data.shape, lambda *x: data[x])
    mask = hcl.compute(data.shape, lambda *x: hcl.cast(dtype, 1))
    return data, mask
Esempio n. 25
0
def thresholdedrelu(data, theta):
    return hcl.compute(
        data.shape, lambda *x: hcl.select(data[x] > theta, data[x],
                                          hcl.cast(data.dtype, 0)))
Esempio n. 26
0
def full(in_shape, fill_val=1, dtype=dtype, name='full'):
    return hcl.compute(in_shape,
                       lambda *x: hcl.cast(dtype, fill_val),
                       name=name)
Esempio n. 27
0
def relu(data, name='relu'):
    return hcl.compute(
        data.shape,
        lambda *y: hcl.select(data[y] < 0, hcl.cast(data.dtype, 0), data[y]),
        name)
Esempio n. 28
0
def top(input, ):
    final_total_extent_1 = (
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_1) *
        hcl.cast(dtype=hcl.Int(bits=64), expr=final_extent_0))
    padded16 = hcl.compute(((final_extent_0 + 6), (final_extent_1 + 6)),
                           lambda x, y: 0,
                           name="padded16",
                           dtype=hcl.Int(bits=16))
    with hcl.Stage("padded16"):
        with hcl.for_(final_min_1, (final_extent_1 + 6),
                      name="padded16_s0_y") as padded16_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 6),
                          name="padded16_s0_x") as padded16_s0_x:
                padded16[padded16_s0_x,
                         padded16_s0_y] = hcl.cast(dtype=hcl.Int(bits=16),
                                                   expr=input[padded16_s0_x,
                                                              padded16_s0_y])
    grad_x = hcl.compute(((final_extent_0 + 4), (final_extent_1 + 4)),
                         lambda x, y: 0,
                         name="grad_x",
                         dtype=hcl.Int(bits=16))
    with hcl.Stage("grad_x"):
        with hcl.for_(final_min_1, (final_extent_1 + 4),
                      name="grad_x_s0_y") as grad_x_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 4),
                          name="grad_x_s0_x") as grad_x_s0_x:
                grad_x[grad_x_s0_x, grad_x_s0_y] = (
                    padded16[(grad_x_s0_x + 2), (grad_x_s0_y + 2)] +
                    (((padded16[(grad_x_s0_x + 2), (grad_x_s0_y + 1)] *
                       hcl.cast(dtype=hcl.Int(bits=16), expr=2)) +
                      ((padded16[(grad_x_s0_x + 2), grad_x_s0_y] -
                        padded16[grad_x_s0_x, grad_x_s0_y]) -
                       (padded16[grad_x_s0_x, (grad_x_s0_y + 1)] *
                        hcl.cast(dtype=hcl.Int(bits=16), expr=2)))) -
                     padded16[grad_x_s0_x, (grad_x_s0_y + 2)]))
    grad_xx = hcl.compute(((final_extent_0 + 4), (final_extent_1 + 4)),
                          lambda x, y: 0,
                          name="grad_xx",
                          dtype=hcl.Int(bits=32))
    with hcl.Stage("grad_xx"):
        with hcl.for_(final_min_1, (final_extent_1 + 4),
                      name="grad_xx_s0_y") as grad_xx_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 4),
                          name="grad_xx_s0_x") as grad_xx_s0_x:
                t30_s = grad_x[grad_xx_s0_x, grad_xx_s0_y]
                grad_xx[grad_xx_s0_x, grad_xx_s0_y] = (
                    hcl.cast(dtype=hcl.Int(bits=32), expr=t30_s) *
                    hcl.cast(dtype=hcl.Int(bits=32), expr=t30_s))
    grad_gx = hcl.compute(((final_extent_0 + 2), (final_extent_1 + 2)),
                          lambda x, y: 0,
                          name="grad_gx",
                          dtype=hcl.Int(bits=32))
    with hcl.Stage("grad_gx"):
        with hcl.for_(final_min_1, (final_extent_1 + 2),
                      name="grad_gx_s0_y") as grad_gx_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 2),
                          name="grad_gx_s0_x") as grad_gx_s0_x:
                grad_gx[grad_gx_s0_x, grad_gx_s0_y] = 0
        with hcl.for_(final_min_1, (final_extent_1 + 2),
                      name="grad_gx_s1_y") as grad_gx_s1_y:
            with hcl.for_(final_min_0, (final_extent_0 + 2),
                          name="grad_gx_s1_x") as grad_gx_s1_x:
                with hcl.for_(0, 3,
                              name="grad_gx_s1_box__y") as grad_gx_s1_box__y:
                    with hcl.for_(
                            0, 3,
                            name="grad_gx_s1_box__x") as grad_gx_s1_box__x:
                        grad_gx[grad_gx_s1_x, grad_gx_s1_y] = (
                            grad_gx[grad_gx_s1_x, grad_gx_s1_y] +
                            grad_xx[(grad_gx_s1_box__x + grad_gx_s1_x),
                                    (grad_gx_s1_box__y + grad_gx_s1_y)])
    grad_y = hcl.compute(((final_extent_0 + 4), (final_extent_1 + 4)),
                         lambda x, y: 0,
                         name="grad_y",
                         dtype=hcl.Int(bits=16))
    with hcl.Stage("grad_y"):
        with hcl.for_(final_min_1, (final_extent_1 + 4),
                      name="grad_y_s0_y") as grad_y_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 4),
                          name="grad_y_s0_x") as grad_y_s0_x:
                grad_y[grad_y_s0_x, grad_y_s0_y] = (
                    (padded16[(grad_y_s0_x + 2), (grad_y_s0_y + 2)] +
                     (((padded16[(grad_y_s0_x + 1), (grad_y_s0_y + 2)] *
                        hcl.cast(dtype=hcl.Int(bits=16), expr=2)) +
                       (padded16[grad_y_s0_x, (grad_y_s0_y + 2)] -
                        padded16[grad_y_s0_x, grad_y_s0_y])) -
                      (padded16[(grad_y_s0_x + 1), grad_y_s0_y] *
                       hcl.cast(dtype=hcl.Int(bits=16), expr=2)))) -
                    padded16[(grad_y_s0_x + 2), grad_y_s0_y])
    grad_xy = hcl.compute(((final_extent_0 + 4), (final_extent_1 + 4)),
                          lambda x, y: 0,
                          name="grad_xy",
                          dtype=hcl.Int(bits=32))
    with hcl.Stage("grad_xy"):
        with hcl.for_(final_min_1, (final_extent_1 + 4),
                      name="grad_xy_s0_y") as grad_xy_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 4),
                          name="grad_xy_s0_x") as grad_xy_s0_x:
                grad_xy[grad_xy_s0_x, grad_xy_s0_y] = (
                    hcl.cast(dtype=hcl.Int(bits=32),
                             expr=grad_x[grad_xy_s0_x, grad_xy_s0_y]) *
                    hcl.cast(dtype=hcl.Int(bits=32),
                             expr=grad_y[grad_xy_s0_x, grad_xy_s0_y]))
    grad_gxy = hcl.compute(((final_extent_0 + 2), (final_extent_1 + 2)),
                           lambda x, y: 0,
                           name="grad_gxy",
                           dtype=hcl.Int(bits=32))
    with hcl.Stage("grad_gxy"):
        with hcl.for_(final_min_1, (final_extent_1 + 2),
                      name="grad_gxy_s0_y") as grad_gxy_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 2),
                          name="grad_gxy_s0_x") as grad_gxy_s0_x:
                grad_gxy[grad_gxy_s0_x, grad_gxy_s0_y] = 0
        with hcl.for_(final_min_1, (final_extent_1 + 2),
                      name="grad_gxy_s1_y") as grad_gxy_s1_y:
            with hcl.for_(final_min_0, (final_extent_0 + 2),
                          name="grad_gxy_s1_x") as grad_gxy_s1_x:
                with hcl.for_(0, 3,
                              name="grad_gxy_s1_box__y") as grad_gxy_s1_box__y:
                    with hcl.for_(
                            0, 3,
                            name="grad_gxy_s1_box__x") as grad_gxy_s1_box__x:
                        grad_gxy[grad_gxy_s1_x, grad_gxy_s1_y] = (
                            grad_gxy[grad_gxy_s1_x, grad_gxy_s1_y] +
                            grad_xy[(grad_gxy_s1_box__x + grad_gxy_s1_x),
                                    (grad_gxy_s1_box__y + grad_gxy_s1_y)])
    grad_yy = hcl.compute(((final_extent_0 + 4), (final_extent_1 + 4)),
                          lambda x, y: 0,
                          name="grad_yy",
                          dtype=hcl.Int(bits=32))
    with hcl.Stage("grad_yy"):
        with hcl.for_(final_min_1, (final_extent_1 + 4),
                      name="grad_yy_s0_y") as grad_yy_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 4),
                          name="grad_yy_s0_x") as grad_yy_s0_x:
                t31_s = grad_y[grad_yy_s0_x, grad_yy_s0_y]
                grad_yy[grad_yy_s0_x, grad_yy_s0_y] = (
                    hcl.cast(dtype=hcl.Int(bits=32), expr=t31_s) *
                    hcl.cast(dtype=hcl.Int(bits=32), expr=t31_s))
    grad_gy = hcl.compute(((final_extent_0 + 2), (final_extent_1 + 2)),
                          lambda x, y: 0,
                          name="grad_gy",
                          dtype=hcl.Int(bits=32))
    with hcl.Stage("grad_gy"):
        with hcl.for_(final_min_1, (final_extent_1 + 2),
                      name="grad_gy_s0_y") as grad_gy_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 2),
                          name="grad_gy_s0_x") as grad_gy_s0_x:
                grad_gy[grad_gy_s0_x, grad_gy_s0_y] = 0
        with hcl.for_(final_min_1, (final_extent_1 + 2),
                      name="grad_gy_s1_y") as grad_gy_s1_y:
            with hcl.for_(final_min_0, (final_extent_0 + 2),
                          name="grad_gy_s1_x") as grad_gy_s1_x:
                with hcl.for_(0, 3,
                              name="grad_gy_s1_box__y") as grad_gy_s1_box__y:
                    with hcl.for_(
                            0, 3,
                            name="grad_gy_s1_box__x") as grad_gy_s1_box__x:
                        grad_gy[grad_gy_s1_x, grad_gy_s1_y] = (
                            grad_gy[grad_gy_s1_x, grad_gy_s1_y] +
                            grad_yy[(grad_gy_s1_box__x + grad_gy_s1_x),
                                    (grad_gy_s1_box__y + grad_gy_s1_y)])
    cim = hcl.compute(((final_extent_0 + 2), (final_extent_1 + 2)),
                      lambda x, y: 0,
                      name="cim",
                      dtype=hcl.Float(bits=32))
    with hcl.Stage("cim"):
        with hcl.for_(final_min_1, (final_extent_1 + 2),
                      name="cim_s0_y") as cim_s0_y:
            with hcl.for_(final_min_0, (final_extent_0 + 2),
                          name="cim_s0_x") as cim_s0_x:
                t32 = grad_gx[cim_s0_x, cim_s0_y]
                t33 = grad_gy[cim_s0_x, cim_s0_y]
                t34 = grad_gxy[cim_s0_x, cim_s0_y]
                t35 = (hcl.cast(dtype=hcl.Float(bits=32), expr=(t32 // 144)) +
                       hcl.cast(dtype=hcl.Float(bits=32), expr=(t33 // 144)))
                cim[cim_s0_x, cim_s0_y] = (
                    ((hcl.cast(dtype=hcl.Float(bits=32), expr=(t32 // 144)) *
                      hcl.cast(dtype=hcl.Float(bits=32), expr=(t33 // 144))) -
                     (hcl.cast(dtype=hcl.Float(bits=32), expr=(t34 // 144)) *
                      hcl.cast(dtype=hcl.Float(bits=32), expr=(t34 // 144)))) -
                    ((t35 * t35) *
                     hcl.cast(dtype=hcl.Float(bits=32), expr=0.040000)))
    output_final = hcl.compute((final_extent_0, final_extent_1),
                               lambda x, y: 0,
                               name="output_final",
                               dtype=hcl.UInt(bits=16))
    with hcl.Stage("output_final"):
        with hcl.for_(final_min_1, final_extent_1,
                      name="output_final_s0_y") as output_final_s0_y:
            with hcl.for_(final_min_0,
                          final_extent_0,
                          name="output_final_s0_x") as output_final_s0_x:
                t36 = cim[(output_final_s0_x + 1), (output_final_s0_y + 1)]
                output_final[output_final_s0_x, output_final_s0_y] = hcl.select(
                    hcl.and_(
                        (hcl.cast(dtype=hcl.Float(bits=32), expr=100.000000) <=
                         t36), (hcl.select(
                             cim[(output_final_s0_x + 2),
                                 (output_final_s0_y + 2)] >
                             hcl.select(
                                 cim[(output_final_s0_x + 1),
                                     (output_final_s0_y + 2)] >
                                 hcl.select(
                                     cim[output_final_s0_x,
                                         (output_final_s0_y + 2)]
                                     > hcl.select(
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)]
                                         > hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])),
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)],
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]))),
                                     cim[output_final_s0_x,
                                         (output_final_s0_y + 2)],
                                     hcl.select(
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)] >
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])),
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)],
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])))),
                                 cim[(output_final_s0_x + 1),
                                     (output_final_s0_y + 2)],
                                 hcl.select(
                                     cim[output_final_s0_x,
                                         (output_final_s0_y + 2)] >
                                     hcl.select(
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)] >
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])),
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)],
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]))),
                                     cim[output_final_s0_x,
                                         (output_final_s0_y + 2)],
                                     hcl.select(
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)] >
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])),
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)],
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]))))),
                             cim[(output_final_s0_x + 2),
                                 (output_final_s0_y + 2)],
                             hcl.select(
                                 cim[(output_final_s0_x + 1),
                                     (output_final_s0_y + 2)] >
                                 hcl.select(
                                     cim[output_final_s0_x,
                                         (output_final_s0_y + 2)] >
                                     hcl.select(
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)] >
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])),
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)],
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]))),
                                     cim[output_final_s0_x,
                                         (output_final_s0_y + 2)],
                                     hcl.select(
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)] >
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])),
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)],
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])))),
                                 cim[(output_final_s0_x + 1),
                                     (output_final_s0_y + 2)],
                                 hcl.select(
                                     cim[output_final_s0_x,
                                         (output_final_s0_y + 2)] >
                                     hcl.select(
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)] >
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])),
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)],
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]))),
                                     cim[output_final_s0_x,
                                         (output_final_s0_y + 2)],
                                     hcl.select(
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)] >
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])),
                                         cim[(output_final_s0_x + 2),
                                             (output_final_s0_y + 1)],
                                         hcl.select(
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)] >
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y]),
                                             cim[output_final_s0_x,
                                                 (output_final_s0_y + 1)],
                                             hcl.select(
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y] >
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y],
                                                 cim[output_final_s0_x,
                                                     output_final_s0_y],
                                                 cim[(output_final_s0_x + 1),
                                                     output_final_s0_y])))))) <
                                t36)),
                    hcl.cast(dtype=hcl.UInt(bits=16), expr=255),
                    hcl.cast(dtype=hcl.UInt(bits=16), expr=0))
    final = hcl.compute((2442, 3258),
                        lambda x, y: 0,
                        name="final",
                        dtype=hcl.UInt(bits=16))
    with hcl.Stage("final"):
        with hcl.for_(final_min_1, final_extent_1,
                      name="final_s0_y") as final_s0_y:
            with hcl.for_(final_min_0, final_extent_0,
                          name="final_s0_x") as final_s0_x:
                final[final_s0_x, final_s0_y] = output_final[final_s0_x,
                                                             final_s0_y]
    return final
Esempio n. 29
0
def zeros_like(array, dtype=None, name='zeros_like'):
    if dtype is None:
        dtype = array.dtype
    return hcl.compute(array.shape, lambda *x: hcl.cast(dtype, 0), name=name)
Esempio n. 30
0
def ones(in_shape, dtype=dtype, name='ones'):
    return hcl.compute(in_shape, lambda *x: hcl.cast(dtype, 1), name=name)