Esempio n. 1
0
def scan_detector_parm(image_stack, experiment,test_crds,controller,parm_to_opt,parm_vector,slice_shape):
    #0-distance
    #1-x center
    #2-xtilt
    #3-ytilt
    #4-ztilt
    
    multiprocessing_start_method = 'fork' if hasattr(os, 'fork') else 'spawn'
    
    #current detector parameters, note the value for the actively optimized parameters will be ignored
    distance=experiment.detector_params[5]#mm
    x_cen=experiment.detector_params[3]#mm
    xtilt=experiment.detector_params[0]
    ytilt=experiment.detector_params[1]
    ztilt=experiment.detector_params[2]  
    
    num_parm_pts=len(parm_vector)
    
    trial_data=np.zeros([num_parm_pts,slice_shape[0],slice_shape[1]])
    
    tmp_td=copy.copy(experiment.tVec_d)
    for jj in np.arange(num_parm_pts):
        print('cycle %d of %d'%(jj+1,num_parm_pts))

        
        if parm_to_opt==0:
            tmp_td[2]=parm_vector[jj]        
        else:
            tmp_td[2]=distance   
        
        if parm_to_opt==1:
            tmp_td[0]=parm_vector[jj]        
        else:
            tmp_td[0]=x_cen
        
        if  parm_to_opt==2:
            rMat_d_tmp=makeDetectorRotMat([parm_vector[jj],ytilt,ztilt]) 
        elif parm_to_opt==3:
            rMat_d_tmp=makeDetectorRotMat([xtilt,parm_vector[jj],ztilt])
        elif parm_to_opt==4:
            rMat_d_tmp=makeDetectorRotMat([xtilt,ytilt,parm_vector[jj]])  
        else:
            rMat_d_tmp=makeDetectorRotMat([xtilt,ytilt,ztilt])
        
        experiment.rMat_d = rMat_d_tmp
        experiment.tVec_d = tmp_td

        
        
        conf=test_orientations(image_stack, experiment, test_crds,
                      controller,multiprocessing_start_method)
        
        
        trial_data[jj]=np.max(conf,axis=0).reshape(slice_shape)
        
    return trial_data
Esempio n. 2
0
def scan_detector_parm(image_stack, experiment,test_crds,controller,parm_to_opt,parm_vector,slice_shape):
    #0-distance
    #1-x center
    #2-xtilt
    #3-ytilt
    #4-ztilt
    
    multiprocessing_start_method = 'fork' if hasattr(os, 'fork') else 'spawn'
    
    #current detector parameters, note the value for the actively optimized parameters will be ignored
    distance=experiment.detector_params[5]#mm
    x_cen=experiment.detector_params[3]#mm
    xtilt=experiment.detector_params[0]
    ytilt=experiment.detector_params[1]
    ztilt=experiment.detector_params[2]  
    
    num_parm_pts=len(parm_vector)
    
    trial_data=np.zeros([num_parm_pts,slice_shape[0],slice_shape[1]])
    
    tmp_td=copy.copy(experiment.tVec_d)
    for jj in np.arange(num_parm_pts):
        print('cycle %d of %d'%(jj+1,num_parm_pts))

        
        if parm_to_opt==0:
            tmp_td[2]=parm_vector[jj]        
        else:
            tmp_td[2]=distance   
        
        if parm_to_opt==1:
            tmp_td[0]=parm_vector[jj]        
        else:
            tmp_td[0]=x_cen
        
        if  parm_to_opt==2:
            rMat_d_tmp=makeDetectorRotMat([parm_vector[jj],ytilt,ztilt]) 
        elif parm_to_opt==3:
            rMat_d_tmp=makeDetectorRotMat([xtilt,parm_vector[jj],ztilt])
        elif parm_to_opt==4:
            rMat_d_tmp=makeDetectorRotMat([xtilt,ytilt,parm_vector[jj]])  
        else:
            rMat_d_tmp=makeDetectorRotMat([xtilt,ytilt,ztilt])
        
        experiment.rMat_d = rMat_d_tmp
        experiment.tVec_d = tmp_td

        
        
        conf=test_orientations(image_stack, experiment, test_crds,
                      controller,multiprocessing_start_method)
        
        
        trial_data[jj]=np.max(conf,axis=0).reshape(slice_shape)
        
    return trial_data
Esempio n. 3
0
 def set_tilt(self, tilt):
     """
     default geometry defined in transforms...
     detector normal is local Z
     """
     self.__rMat = xf.makeDetectorRotMat(tilt)
     self.__nVec = np.dot(self.__rMat, Z_ref)
     self.__tilt = tilt
     return
Esempio n. 4
0
 def set_tilt(self, tilt):
     """
     default geometry defined in transforms...
     detector normal is local Z
     """
     self.__rMat = xf.makeDetectorRotMat(tilt)
     self.__nVec = np.dot(self.__rMat, Z_ref)
     self.__tilt = tilt
     return
def sxcal_obj_func(plist_fit,
                   plist_full,
                   param_flags,
                   dfuncs,
                   dparam_flags,
                   ndparams,
                   instr,
                   xyo_det,
                   hkls_idx,
                   bmat,
                   vinv_s,
                   ome_period,
                   bvec,
                   evec,
                   sim_only=False,
                   return_value_flag=None):
    """
    """
    # stack flags and force bool repr
    refine_flags = np.array(np.hstack([param_flags, dparam_flags]), dtype=bool)

    # fill out full parameter list
    # !!! no scaling for now
    plist_full[refine_flags] = plist_fit

    # instrument quantities
    wavelength = plist_full[0]
    chi = plist_full[1]
    tvec_s = plist_full[2:5]

    # calibration crystal quantities
    rmat_c = xfcapi.makeRotMatOfExpMap(plist_full[5:8])
    tvec_c = plist_full[8:11]

    # right now just stuck on the end and assumed
    # to all be the same length... FIX THIS
    dparams_all = plist_full[-len(dparam_flags):]
    xy_unwarped = {}
    meas_omes = {}
    calc_omes = {}
    calc_xy = {}
    ii = 11  # offset to start of panels...
    jj = 0
    npts_tot = 0
    for det_key, panel in instr.detectors.iteritems():
        xy_unwarped[det_key] = xyo_det[det_key][:, :2]
        npts_tot += len(xyo_det[det_key])
        dfunc = dfuncs[det_key]
        len_these_dps = ndparams[det_key]
        if dfunc is not None:  # do unwarping
            dparams = dparams_all[jj:jj + len_these_dps]
            jj += len_these_dps
            xy_unwarped[det_key] = dfunc(xy_unwarped[det_key], dparams)
            pass
        meas_omes[det_key] = xyo_det[det_key][:, 2]

        # get these panel params for convenience
        gparams = plist_full[ii:ii + 6]

        rmat_d = xfcapi.makeDetectorRotMat(gparams[:3])
        tvec_d = gparams[3:].reshape(3, 1)

        # transform G-vectors:
        # 1) convert inv. stretch tensor from MV notation in to 3x3
        # 2) take reciprocal lattice vectors from CRYSTAL to SAMPLE frame
        # 3) apply stretch tensor
        # 4) normalize reciprocal lattice vectors in SAMPLE frame
        # 5) transform unit reciprocal lattice vetors back to CRYSAL frame
        gvec_c = np.dot(bmat, hkls_idx[det_key].T)
        vmat_s = mutil.vecMVToSymm(vinv_s)
        ghat_s = mutil.unitVector(np.dot(vmat_s, np.dot(rmat_c, gvec_c)))
        ghat_c = np.dot(rmat_c.T, ghat_s)

        match_omes, calc_omes_tmp = fitting.matchOmegas(xyo_det[det_key],
                                                        hkls_idx[det_key].T,
                                                        chi,
                                                        rmat_c,
                                                        bmat,
                                                        wavelength,
                                                        vInv=vinv_s,
                                                        beamVec=bvec,
                                                        etaVec=evec,
                                                        omePeriod=ome_period)

        rmat_s_arr = xfcapi.makeOscillRotMatArray(
            chi, np.ascontiguousarray(calc_omes_tmp))
        calc_xy_tmp = xfcapi.gvecToDetectorXYArray(ghat_c.T, rmat_d,
                                                   rmat_s_arr, rmat_c, tvec_d,
                                                   tvec_s, tvec_c)
        if np.any(np.isnan(calc_xy_tmp)):
            print("infeasible parameters: " +
                  "may want to scale back finite difference step size")

        calc_omes[det_key] = calc_omes_tmp
        calc_xy[det_key] = calc_xy_tmp

        ii += 6
        pass

    # return values
    if sim_only:
        retval = {}
        for det_key in calc_xy.keys():
            # ??? calc_xy is always 2-d
            retval[det_key] = np.vstack(
                [calc_xy[det_key].T, calc_omes[det_key]]).T
    else:
        meas_xy_all = []
        calc_xy_all = []
        meas_omes_all = []
        calc_omes_all = []
        for det_key in xy_unwarped.keys():
            meas_xy_all.append(xy_unwarped[det_key])
            calc_xy_all.append(calc_xy[det_key])
            meas_omes_all.append(meas_omes[det_key])
            calc_omes_all.append(calc_omes[det_key])
            pass
        meas_xy_all = np.vstack(meas_xy_all)
        calc_xy_all = np.vstack(calc_xy_all)
        meas_omes_all = np.hstack(meas_omes_all)
        calc_omes_all = np.hstack(calc_omes_all)

        diff_vecs_xy = calc_xy_all - meas_xy_all
        diff_ome = xfcapi.angularDifference(calc_omes_all, meas_omes_all)
        retval = np.hstack([diff_vecs_xy,
                            diff_ome.reshape(npts_tot, 1)]).flatten()
        if return_value_flag == 1:
            retval = sum(abs(retval))
        elif return_value_flag == 2:
            denom = npts_tot - len(plist_fit) - 1.
            if denom != 0:
                nu_fac = 1. / denom
            else:
                nu_fac = 1.
            nu_fac = 1 / (npts_tot - len(plist_fit) - 1.)
            retval = nu_fac * sum(retval**2)
    return retval
Esempio n. 6
0
import sys, os, time, random
import numpy as np

from hexrd.xrd import transforms as xf
from hexrd.xrd import transforms_CAPI as xfcapi

epsf = 2.2e-16

vec = np.array([[random.uniform(-np.pi,np.pi),random.uniform(-np.pi,np.pi),random.uniform(-np.pi,np.pi)]])
vHat1 = xf.unitVector(vec.T)
vHat2 = xfcapi.unitRowVector(vec)
print "unitVector results match:             ",np.linalg.norm(vHat1.T-vHat2)/np.linalg.norm(vHat1) < epsf

tAng = np.array([0.0011546340766314521,-0.0040527538387122993,-0.0026221336905160211])
rMat1 = xf.makeDetectorRotMat(tAng)
rMat2 = xfcapi.makeDetectorRotMat(tAng)
print "makeDetectorRotMat results match:     ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf

oAng = np.array([-0.0011591608938627839,0.0011546340766314521])
rMat1 = xf.makeOscillRotMat(oAng)
rMat2 = xfcapi.makeOscillRotMat(oAng)
print "makeOscillRotMat results match:       ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf

eMap = np.array([ 0.66931818,-0.98578066,0.73593251])
rMat1 = xf.makeRotMatOfExpMap(eMap)
rMat2 = xfcapi.makeRotMatOfExpMap(eMap)
print "makeRotMatOfExpMap results match:     ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf

axis = np.array([ 0.66931818,-0.98578066,0.73593251])
rMat1 = xf.makeBinaryRotMat(axis)
rMat2 = xfcapi.makeBinaryRotMat(axis)
Esempio n. 7
0
def mockup_experiment():
    # user options
    # each grain is provided in the form of a quaternion.

    # The following array contains the quaternions for the array. Note that the
    # quaternions are in the columns, with the first row (row 0) being the real
    # part w. We assume that we are dealing with unit quaternions

    quats = np.array([[0.91836393, 0.90869942], [0.33952917, 0.1834835],
                      [0.17216207, 0.10095837], [0.10811041, 0.36111851]])

    n_grains = quats.shape[-1]  # last dimension provides the number of grains
    phis = 2. * np.arccos(
        quats[0, :])  # phis are the angles for the quaternion
    ns = mutil.unitVector(
        quats[1:, :])  # ns contains the rotation axis as an unit vector
    exp_maps = np.array([phis[i] * ns[:, i] for i in range(n_grains)])
    rMat_c = rot.rotMatOfQuat(quats)

    cvec = np.arange(-25, 26)
    X, Y, Z = np.meshgrid(cvec, cvec, cvec)

    crd0 = 1e-3 * np.vstack([X.flatten(), Y.flatten(), Z.flatten()]).T
    crd1 = crd0 + np.r_[0.100, 0.100, 0]
    crds = np.array([crd0, crd1])

    # make grain parameters
    grain_params = []
    for i in range(n_grains):
        for j in range(len(crd0)):
            grain_params.append(
                np.hstack(
                    [exp_maps[i, :], crds[i][j, :],
                     xf.vInv_ref.flatten()]))

    # scan range and period
    ome_period = (0, 2 * np.pi)
    ome_range = [
        ome_period,
    ]
    ome_step = np.radians(1.)
    nframes = 0
    for i in range(len(ome_range)):
        del_ome = ome_range[i][1] - ome_range[i][0]
        nframes += int((ome_range[i][1] - ome_range[i][0]) / ome_step)

    ome_edges = np.arange(nframes + 1) * ome_step

    # instrument
    with open('./retiga.yml', 'r') as fildes:
        instr_cfg = yaml.load(fildes)

    tiltAngles = instr_cfg['detector']['transform']['tilt_angles']
    tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(
        3, 1)
    chi = instr_cfg['oscillation_stage']['chi']
    tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1)
    rMat_d = xfcapi.makeDetectorRotMat(tiltAngles)
    rMat_s = xfcapi.makeOscillRotMat([chi, 0.])

    pixel_size = instr_cfg['detector']['pixels']['size']
    nrows = instr_cfg['detector']['pixels']['rows']
    ncols = instr_cfg['detector']['pixels']['columns']

    col_ps = pixel_size[1]
    row_ps = pixel_size[0]

    row_dim = row_ps * nrows  # in mm
    col_dim = col_ps * ncols  # in mm
    panel_dims = [(-0.5 * ncols * col_ps, -0.5 * nrows * row_ps),
                  (0.5 * ncols * col_ps, 0.5 * nrows * row_ps)]

    x_col_edges = col_ps * (np.arange(ncols + 1) - 0.5 * ncols)
    y_row_edges = row_ps * (np.arange(nrows, -1, -1) - 0.5 * nrows)
    #x_col_edges = np.arange(panel_dims[0][0], panel_dims[1][0] + 0.5*col_ps, col_ps)
    #y_row_edges = np.arange(panel_dims[0][1], panel_dims[1][1] + 0.5*row_ps, row_ps)
    rx, ry = np.meshgrid(x_col_edges, y_row_edges)

    gcrds = xfcapi.detectorXYToGvec(
        np.vstack([rx.flatten(), ry.flatten()]).T, rMat_d, rMat_s, tVec_d,
        tVec_s, np.zeros(3))

    max_pixel_tth = np.amax(gcrds[0][0])
    detector_params = np.hstack(
        [tiltAngles, tVec_d.flatten(), chi,
         tVec_s.flatten()])
    distortion = None

    # a different parametrization for the sensor (makes for faster quantization)
    base = np.array([x_col_edges[0], y_row_edges[0], ome_edges[0]])
    deltas = np.array([
        x_col_edges[1] - x_col_edges[0], y_row_edges[1] - y_row_edges[0],
        ome_edges[1] - ome_edges[0]
    ])
    inv_deltas = 1.0 / deltas
    clip_vals = np.array([ncols, nrows])

    # dilation
    max_diameter = np.sqrt(3) * 0.005
    row_dilation = np.ceil(0.5 * max_diameter / row_ps)
    col_dilation = np.ceil(0.5 * max_diameter / col_ps)

    # crystallography data
    from hexrd import valunits
    gold = material.Material('gold')
    gold.sgnum = 225
    gold.latticeParameters = [
        4.0782,
    ]
    gold.hklMax = 200
    gold.beamEnergy = valunits.valWUnit("wavelength", "ENERGY", 52, "keV")
    gold.planeData.exclusions = None
    gold.planeData.tThMax = max_pixel_tth  #note this comes from info in the detector

    ns = argparse.Namespace()
    # grains related information
    ns.n_grains = n_grains  # this can be derived from other values...
    ns.rMat_c = rMat_c  # n_grains rotation matrices (one per grain)
    ns.exp_maps = exp_maps  # n_grains exp_maps -angle * rotation axis- (one per grain)

    ns.plane_data = gold.planeData
    ns.detector_params = detector_params
    ns.pixel_size = pixel_size
    ns.ome_range = ome_range
    ns.ome_period = ome_period
    ns.x_col_edges = x_col_edges
    ns.y_row_edges = y_row_edges
    ns.ome_edges = ome_edges
    ns.ncols = ncols
    ns.nrows = nrows
    ns.nframes = nframes  # used only in simulate...
    ns.rMat_d = rMat_d
    ns.tVec_d = tVec_d
    ns.chi = chi  # note this is used to compute S... why is it needed?
    ns.tVec_s = tVec_s
    # ns.rMat_s = rMat_s
    # ns.tVec_s = tVec_s
    ns.rMat_c = rMat_c
    ns.row_dilation = row_dilation
    ns.col_dilation = col_dilation
    ns.distortion = distortion
    ns.panel_dims = panel_dims  # used only in simulate...
    ns.base = base
    ns.inv_deltas = inv_deltas
    ns.clip_vals = clip_vals

    return grain_params, ns
Esempio n. 8
0
def objFuncFitGrain(gFit, gFull, gFlag,
                    detectorParams,
                    xyo_det, hkls_idx, bMat, wavelength,
                    bVec, eVec,
                    dFunc, dParams,
                    omePeriod,
                    simOnly=False, returnScalarValue=returnScalarValue):
    """
    gFull[0]  = expMap_c[0]
    gFull[1]  = expMap_c[1]
    gFull[2]  = expMap_c[2]
    gFull[3]  = tVec_c[0]
    gFull[4]  = tVec_c[1]
    gFull[5]  = tVec_c[2]
    gFull[6]  = vInv_MV[0]
    gFull[7]  = vInv_MV[1]
    gFull[8]  = vInv_MV[2]
    gFull[9]  = vInv_MV[3]
    gFull[10] = vInv_MV[4]
    gFull[11] = vInv_MV[5]

    detectorParams[0]  = tiltAngles[0]
    detectorParams[1]  = tiltAngles[1]
    detectorParams[2]  = tiltAngles[2]
    detectorParams[3]  = tVec_d[0]
    detectorParams[4]  = tVec_d[1]
    detectorParams[5]  = tVec_d[2]
    detectorParams[6]  = chi
    detectorParams[7]  = tVec_s[0]
    detectorParams[8]  = tVec_s[1]
    detectorParams[9]  = tVec_s[2]
    """
    npts   = len(xyo_det)

    gFull[gFlag] = gFit

    xy_unwarped = dFunc(xyo_det[:, :2], dParams)

    rMat_d = xfcapi.makeDetectorRotMat(detectorParams[:3])
    tVec_d = detectorParams[3:6].reshape(3, 1)
    chi    = detectorParams[6]
    tVec_s = detectorParams[7:10].reshape(3, 1)

    rMat_c = xfcapi.makeRotMatOfExpMap(gFull[:3])
    tVec_c = gFull[3:6].reshape(3, 1)
    vInv_s = gFull[6:]
    vMat_s = mutil.vecMVToSymm(vInv_s)              # NOTE: Inverse of V from F = V * R

    gVec_c = np.dot(bMat, hkls_idx)                 # gVecs with magnitudes in CRYSTAL frame
    gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # stretched gVecs in SAMPLE frame
    gHat_c = mutil.unitVector(
        np.dot(rMat_c.T, gVec_s)) # unit reciprocal lattice vectors in CRYSTAL frame

    match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength,
                                        vInv=vInv_s, beamVec=bVec, etaVec=eVec,
                                        omePeriod=omePeriod)

    calc_xy = np.zeros((npts, 2))
    for i in range(npts):
        rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]])
        calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i],
                                                rMat_d, rMat_s, rMat_c,
                                                tVec_d, tVec_s, tVec_c,
                                                beamVec=bVec).flatten()
        pass
    if np.any(np.isnan(calc_xy)):
        print "infeasible pFull"

    # return values
    if simOnly:
        retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)])
    else:
        diff_vecs_xy = calc_xy - xy_unwarped[:, :2]
        diff_ome     = xf.angularDifference( calc_omes, xyo_det[:, 2] )
        retval = mutil.rowNorm(
            np.hstack([diff_vecs_xy,
                       diff_ome.reshape(npts, 1)
                       ]) ).flatten()
        if returnScalarValue:
            retval = sum( retval )
    return retval
Esempio n. 9
0
def mockup_experiment():
    # user options
    # each grain is provided in the form of a quaternion.

    # The following array contains the quaternions for the array. Note that the
    # quaternions are in the columns, with the first row (row 0) being the real
    # part w. We assume that we are dealing with unit quaternions

    quats = np.array([[ 0.91836393,  0.90869942],
                      [ 0.33952917,  0.1834835 ],
                      [ 0.17216207,  0.10095837],
                      [ 0.10811041,  0.36111851]])

    n_grains = quats.shape[-1] # last dimension provides the number of grains
    phis = 2.*np.arccos(quats[0, :]) # phis are the angles for the quaternion
    ns = mutil.unitVector(quats[1:, :]) # ns contains the rotation axis as an unit vector
    exp_maps = np.array([phis[i]*ns[:, i] for i in range(n_grains)])
    rMat_c = rot.rotMatOfQuat(quats)

    cvec = np.arange(-25, 26)
    X, Y, Z = np.meshgrid(cvec, cvec, cvec)

    crd0 = 1e-3*np.vstack([X.flatten(), Y.flatten(), Z.flatten()]).T
    crd1 = crd0 + np.r_[0.100, 0.100, 0]
    crds = np.array([crd0, crd1])

    # make grain parameters
    grain_params = []
    for i in range(n_grains):
        for j in range(len(crd0)):
            grain_params.append(
                np.hstack([exp_maps[i, :], crds[i][j, :], xf.vInv_ref.flatten()])
            )

    # scan range and period
    ome_period = (0, 2*np.pi)
    ome_range = [ome_period,]
    ome_step = np.radians(1.)
    nframes = 0
    for i in range(len(ome_range)):
        del_ome = ome_range[i][1]-ome_range[i][0]
        nframes += int((ome_range[i][1]-ome_range[i][0])/ome_step)

    ome_edges = np.arange(nframes+1)*ome_step

    # instrument
    with open('./retiga.yml', 'r') as fildes:
        instr_cfg = yaml.load(fildes)

    tiltAngles = instr_cfg['detector']['transform']['tilt_angles']
    tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(3,1)
    chi = instr_cfg['oscillation_stage']['chi']
    tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3,1)
    rMat_d = xfcapi.makeDetectorRotMat(tiltAngles)
    rMat_s = xfcapi.makeOscillRotMat([chi, 0.])

    pixel_size = instr_cfg['detector']['pixels']['size']
    nrows = instr_cfg['detector']['pixels']['rows']
    ncols = instr_cfg['detector']['pixels']['columns']

    col_ps = pixel_size[1]
    row_ps = pixel_size[0]

    row_dim = row_ps*nrows # in mm
    col_dim = col_ps*ncols # in mm
    panel_dims = [(-0.5*ncols*col_ps, -0.5*nrows*row_ps),
                  ( 0.5*ncols*col_ps,  0.5*nrows*row_ps)]

    x_col_edges = col_ps * (np.arange(ncols + 1) - 0.5*ncols)
    y_row_edges = row_ps * (np.arange(nrows, -1, -1) - 0.5*nrows)
    #x_col_edges = np.arange(panel_dims[0][0], panel_dims[1][0] + 0.5*col_ps, col_ps)
    #y_row_edges = np.arange(panel_dims[0][1], panel_dims[1][1] + 0.5*row_ps, row_ps)
    rx, ry = np.meshgrid(x_col_edges, y_row_edges)

    gcrds = xfcapi.detectorXYToGvec(np.vstack([rx.flatten(), ry.flatten()]).T,
                                    rMat_d, rMat_s,
                                    tVec_d, tVec_s, np.zeros(3))

    max_pixel_tth = np.amax(gcrds[0][0])
    detector_params = np.hstack([tiltAngles, tVec_d.flatten(), chi,
                                 tVec_s.flatten()])
    distortion = None

    # a different parametrization for the sensor (makes for faster quantization)
    base = np.array([x_col_edges[0],
                     y_row_edges[0],
                     ome_edges[0]])
    deltas = np.array([x_col_edges[1] - x_col_edges[0],
                       y_row_edges[1] - y_row_edges[0],
                       ome_edges[1] - ome_edges[0]])
    inv_deltas = 1.0/deltas
    clip_vals = np.array([ncols, nrows])



    # dilation
    max_diameter = np.sqrt(3)*0.005
    row_dilation = np.ceil(0.5 * max_diameter/row_ps)
    col_dilation = np.ceil(0.5 * max_diameter/col_ps)

    # crystallography data
    from hexrd import valunits
    gold = material.Material('gold')
    gold.sgnum = 225
    gold.latticeParameters = [4.0782, ]
    gold.hklMax = 200
    gold.beamEnergy = valunits.valWUnit("wavelength", "ENERGY", 52, "keV")
    gold.planeData.exclusions = None
    gold.planeData.tThMax = max_pixel_tth #note this comes from info in the detector


    ns = argparse.Namespace()
    # grains related information
    ns.n_grains = n_grains # this can be derived from other values...
    ns.rMat_c = rMat_c # n_grains rotation matrices (one per grain)
    ns.exp_maps = exp_maps # n_grains exp_maps -angle * rotation axis- (one per grain)

    ns.plane_data = gold.planeData
    ns.detector_params = detector_params
    ns.pixel_size = pixel_size
    ns.ome_range = ome_range
    ns.ome_period = ome_period
    ns.x_col_edges = x_col_edges
    ns.y_row_edges = y_row_edges
    ns.ome_edges = ome_edges
    ns.ncols = ncols
    ns.nrows = nrows
    ns.nframes = nframes # used only in simulate...
    ns.rMat_d = rMat_d
    ns.tVec_d = tVec_d
    ns.chi = chi # note this is used to compute S... why is it needed?
    ns.tVec_s = tVec_s
    # ns.rMat_s = rMat_s
    # ns.tVec_s = tVec_s
    ns.rMat_c = rMat_c
    ns.row_dilation = row_dilation
    ns.col_dilation = col_dilation
    ns.distortion = distortion
    ns.panel_dims = panel_dims # used only in simulate...
    ns.base = base
    ns.inv_deltas = inv_deltas
    ns.clip_vals = clip_vals

    return grain_params, ns
Esempio n. 10
0
 def rmat(self):
     return makeDetectorRotMat(self.tilt)
Esempio n. 11
0
from hexrd.utils import profiler

import matplotlib
matplotlib.use('Qt4Agg')
from matplotlib import pyplot as plt

# load in config files for convenience
instr_cfg = yaml.load(open('./analysis/ge_detector.yml', 'r'))
pixel_pitch = instr_cfg['detector']['pixels']['size']

# load material file
mat_list = cPickle.load(open('./include/materials.cpl', 'r'))
pd = mat_list[-1].planeData

# define instrument params
rMat_d = xfcapi.makeDetectorRotMat(
    instr_cfg['detector']['transform']['tilt_angles'])
tVec_d = np.r_[instr_cfg['detector']['transform']['t_vec_d']]
rMat_s = np.eye(3)
tVec_s = np.zeros(3)
rMat_c = np.eye(3)
tVec_c = np.zeros(3)

try:
    #dfunc = instr_cfg['detector']['distortion']['function_name']
    dparams = instr_cfg['detector']['distortion']['parameters']
    distortion = (xf.dFunc_ref, dparams)
except (KeyError):
    distortion = None

# for defining patches
delta_eta = 0.5
Esempio n. 12
0
 def __init__(self):
     self.tilt = np.zeros(3)
     self.rmat = xfcapi.makeDetectorRotMat(self.tilt)
     self.tvec = np.r_[0., 0., -1000.]
Esempio n. 13
0
def gen_trial_exp_data(grain_out_file,det_file,mat_file, x_ray_energy, mat_name, max_tth, comp_thresh, chi2_thresh, misorientation_bnd, \
                       misorientation_spacing,ome_range_deg, nframes, beam_stop_width):

    print('Loading Grain Data.....')
    #gen_grain_data
    ff_data=np.loadtxt(grain_out_file)
    
    #ff_data=np.atleast_2d(ff_data[2,:])
    
    exp_maps=ff_data[:,3:6]
    t_vec_ds=ff_data[:,6:9]
    
    
    # 
    completeness=ff_data[:,1]
    
    chi2=ff_data[:,2]
    
    n_grains=exp_maps.shape[0]
    
    rMat_c = rot.rotMatOfExpMap(exp_maps.T)
    
    
    
    
    cut=np.where(np.logical_and(completeness>comp_thresh,chi2<chi2_thresh))[0]
    exp_maps=exp_maps[cut,:]
    t_vec_ds=t_vec_ds[cut,:]
    chi2=chi2[cut]
  
    
    # Add Misorientation
    mis_amt=misorientation_bnd*np.pi/180.
    spacing=misorientation_spacing*np.pi/180.
    
    ori_pts = np.arange(-mis_amt, (mis_amt+(spacing*0.999)),spacing)
    num_ori_grid_pts=ori_pts.shape[0]**3
    num_oris=exp_maps.shape[0]
    
    
    XsO, YsO, ZsO = np.meshgrid(ori_pts, ori_pts, ori_pts)
    
    grid0 = np.vstack([XsO.flatten(), YsO.flatten(), ZsO.flatten()]).T
    
    
    exp_maps_expanded=np.zeros([num_ori_grid_pts*num_oris,3])
    t_vec_ds_expanded=np.zeros([num_ori_grid_pts*num_oris,3])
    
    
    for ii in np.arange(num_oris):
        pts_to_use=np.arange(num_ori_grid_pts)+ii*num_ori_grid_pts  
        exp_maps_expanded[pts_to_use,:]=grid0+np.r_[exp_maps[ii,:] ]
        t_vec_ds_expanded[pts_to_use,:]=np.r_[t_vec_ds[ii,:] ]      
    
    
    exp_maps=exp_maps_expanded
    t_vec_ds=t_vec_ds_expanded
    
    n_grains=exp_maps.shape[0]
    
    rMat_c = rot.rotMatOfExpMap(exp_maps.T)
    

    print('Loading Instrument Data.....')
    instr_cfg = yaml.load(open(det_file, 'r'))
    
    tiltAngles = instr_cfg['detector']['transform']['tilt_angles']
    tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(3, 1)
    #tVec_d[0] = -0.05
    chi = instr_cfg['oscillation_stage']['chi']
    tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1)
    
    rMat_d = makeDetectorRotMat(tiltAngles)
    rMat_s = makeOscillRotMat([chi, 0.])
    
    pixel_size = instr_cfg['detector']['pixels']['size']
    
    nrows = instr_cfg['detector']['pixels']['rows']
    ncols = instr_cfg['detector']['pixels']['columns']
    
#    row_dim = pixel_size[0]*nrows # in mm 
#    col_dim = pixel_size[1]*ncols # in mm 
    
    x_col_edges = pixel_size[1]*(np.arange(ncols+1) - 0.5*ncols)
    y_row_edges = pixel_size[0]*(np.arange(nrows+1) - 0.5*nrows)[::-1]
    
    panel_dims = [(-0.5*ncols*pixel_size[1],
                   -0.5*nrows*pixel_size[0]),
                  ( 0.5*ncols*pixel_size[1],
                    0.5*nrows*pixel_size[0])]
    
    # a bit overkill, but grab max two-theta from all pixel transforms
    rx, ry = np.meshgrid(x_col_edges, y_row_edges)
    gcrds = detectorXYToGvec(np.vstack([rx.flatten(), ry.flatten()]).T,
                             rMat_d, rMat_s,
                             tVec_d, tVec_s, np.zeros(3))
    pixel_tth = gcrds[0][0]
    
    detector_params = np.hstack([tiltAngles, tVec_d.flatten(), chi, tVec_s.flatten()])

    
    ome_period_deg=(ome_range_deg[0][0], (ome_range_deg[0][0]+360.)) #degrees 
    ome_step_deg=(ome_range_deg[0][1]-ome_range_deg[0][0])/nframes #degrees 
    
    
    ome_period = (ome_period_deg[0]*np.pi/180.,ome_period_deg[1]*np.pi/180.)
    ome_range = [(ome_range_deg[0][0]*np.pi/180.,ome_range_deg[0][1]*np.pi/180.)]
    ome_step = ome_step_deg*np.pi/180.


    
    ome_edges = np.arange(nframes+1)*ome_step+ome_range[0][0]#fixed 2/26/17
    
    
    base = np.array([x_col_edges[0],
                     y_row_edges[0],
                     ome_edges[0]])
    deltas = np.array([x_col_edges[1] - x_col_edges[0],
                       y_row_edges[1] - y_row_edges[0],
                       ome_edges[1] - ome_edges[0]])
    inv_deltas = 1.0/deltas
    clip_vals = np.array([ncols, nrows])

    print('Loading Material Data.....')
    #Load Material Data
    materials=cpl.load(open( mat_file, "rb" ))


    check=np.zeros(len(materials))
    for ii in np.arange(len(materials)):
        #print materials[ii].name
        check[ii]=materials[ii].name==mat_name
    
    mat_used=materials[np.where(check)[0][0]]
    
    #niti_mart.beamEnergy = valunits.valWUnit("wavelength","ENERGY",61.332,"keV")
    mat_used.beamEnergy = valunits.valWUnit("wavelength","ENERGY",x_ray_energy,"keV")            
    mat_used.planeData.exclusions = np.zeros(len(mat_used.planeData.exclusions), dtype=bool)
    
    
    if max_tth>0.:
         mat_used.planeData.tThMax = np.amax(np.radians(max_tth))   
    else:
        mat_used.planeData.tThMax = np.amax(pixel_tth)        
    
    pd=mat_used.planeData
    
    
    print('Final Assembly.....')
    experiment = argparse.Namespace()
    # grains related information
    experiment.n_grains = n_grains # this can be derived from other values...
    experiment.rMat_c = rMat_c # n_grains rotation matrices (one per grain)
    experiment.exp_maps = exp_maps # n_grains exp_maps -angle * rotation axis- (one per grain)
    
    experiment.plane_data = pd
    experiment.detector_params = detector_params
    experiment.pixel_size = pixel_size
    experiment.ome_range = ome_range
    experiment.ome_period = ome_period
    experiment.x_col_edges = x_col_edges
    experiment.y_row_edges = y_row_edges
    experiment.ome_edges = ome_edges
    experiment.ncols = ncols
    experiment.nrows = nrows
    experiment.nframes = nframes# used only in simulate...
    experiment.rMat_d = rMat_d
    experiment.tVec_d = np.atleast_2d(detector_params[3:6]).T
    experiment.chi = detector_params[6] # note this is used to compute S... why is it needed?
    experiment.tVec_s = np.atleast_2d(detector_params[7:]).T
    experiment.rMat_c = rMat_c
    experiment.distortion = None
    experiment.panel_dims = panel_dims # used only in simulate...
    experiment.base = base
    experiment.inv_deltas = inv_deltas
    experiment.clip_vals = clip_vals
    experiment.bsw = beam_stop_width  
    
    nf_to_ff_id_map=cut
    
    return experiment, nf_to_ff_id_map
Esempio n. 14
0
def objFuncFitGrain(gFit,
                    gFull,
                    gFlag,
                    detectorParams,
                    xyo_det,
                    hkls_idx,
                    bMat,
                    wavelength,
                    bVec,
                    eVec,
                    dFunc,
                    dParams,
                    omePeriod,
                    simOnly=False,
                    return_value_flag=return_value_flag):
    """
    gFull[0]  = expMap_c[0]
    gFull[1]  = expMap_c[1]
    gFull[2]  = expMap_c[2]
    gFull[3]  = tVec_c[0]
    gFull[4]  = tVec_c[1]
    gFull[5]  = tVec_c[2]
    gFull[6]  = vInv_MV[0]
    gFull[7]  = vInv_MV[1]
    gFull[8]  = vInv_MV[2]
    gFull[9]  = vInv_MV[3]
    gFull[10] = vInv_MV[4]
    gFull[11] = vInv_MV[5]

    detectorParams[0]  = tiltAngles[0]
    detectorParams[1]  = tiltAngles[1]
    detectorParams[2]  = tiltAngles[2]
    detectorParams[3]  = tVec_d[0]
    detectorParams[4]  = tVec_d[1]
    detectorParams[5]  = tVec_d[2]
    detectorParams[6]  = chi
    detectorParams[7]  = tVec_s[0]
    detectorParams[8]  = tVec_s[1]
    detectorParams[9]  = tVec_s[2]
    """
    npts = len(xyo_det)

    gFull[gFlag] = gFit

    xy_unwarped = dFunc(xyo_det[:, :2], dParams)

    rMat_d = xfcapi.makeDetectorRotMat(detectorParams[:3])
    tVec_d = detectorParams[3:6].reshape(3, 1)
    chi = detectorParams[6]
    tVec_s = detectorParams[7:10].reshape(3, 1)

    rMat_c = xfcapi.makeRotMatOfExpMap(gFull[:3])
    tVec_c = gFull[3:6].reshape(3, 1)
    vInv_s = gFull[6:]
    vMat_s = mutil.vecMVToSymm(vInv_s)  # NOTE: Inverse of V from F = V * R

    gVec_c = np.dot(bMat, hkls_idx)  # gVecs with magnitudes in CRYSTAL frame
    gVec_s = np.dot(vMat_s, np.dot(rMat_c,
                                   gVec_c))  # stretched gVecs in SAMPLE frame
    gHat_c = mutil.unitVector(np.dot(
        rMat_c.T, gVec_s))  # unit reciprocal lattice vectors in CRYSTAL frame

    match_omes, calc_omes = matchOmegas(xyo_det,
                                        hkls_idx,
                                        chi,
                                        rMat_c,
                                        bMat,
                                        wavelength,
                                        vInv=vInv_s,
                                        beamVec=bVec,
                                        etaVec=eVec,
                                        omePeriod=omePeriod)

    rMat_s = xfcapi.makeOscillRotMatArray(chi, calc_omes)
    calc_xy = xfcapi.gvecToDetectorXYArray(gHat_c.T,
                                           rMat_d,
                                           rMat_s,
                                           rMat_c,
                                           tVec_d,
                                           tVec_s,
                                           tVec_c,
                                           beamVec=bVec)

    if np.any(np.isnan(calc_xy)):
        print "infeasible pFull"

    # return values
    if simOnly:
        retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)])
    else:
        diff_vecs_xy = calc_xy - xy_unwarped[:, :2]
        diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2])
        retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1)]).flatten()
        if return_value_flag == 1:
            retval = sum(abs(retval))
        elif return_value_flag == 2:
            denom = npts - len(gFit) - 1.
            if denom != 0:
                nu_fac = 1. / denom
            else:
                nu_fac = 1.
            retval = nu_fac * sum(retval**2 / abs(
                np.hstack([calc_xy, calc_omes.reshape(npts, 1)]).flatten()))
    return retval
import matplotlib

matplotlib.use("Qt4Agg")
from matplotlib import pyplot as plt

# load in config files for convenience
instr_cfg = yaml.load(open("./analysis/ge_detector.yml", "r"))
pixel_pitch = instr_cfg["detector"]["pixels"]["size"]

# load material file
mat_list = cPickle.load(open("./include/materials.cpl", "r"))
pd = mat_list[-1].planeData

# define instrument params
rMat_d = xfcapi.makeDetectorRotMat(instr_cfg["detector"]["transform"]["tilt_angles"])
tVec_d = np.r_[instr_cfg["detector"]["transform"]["t_vec_d"]]
rMat_s = np.eye(3)
tVec_s = np.zeros(3)
rMat_c = np.eye(3)
tVec_c = np.zeros(3)

try:
    # dfunc = instr_cfg['detector']['distortion']['function_name']
    dparams = instr_cfg["detector"]["distortion"]["parameters"]
    distortion = (xf.dFunc_ref, dparams)
except (KeyError):
    distortion = None

# for defining patches
delta_eta = 0.5
Esempio n. 16
0
    nframes += int((ome_range[i][1] - ome_range[i][0]) / ome_step)
    pass
ome_edges = np.arange(nframes + 1) * ome_step

#==============================================================================
# %% INSTRUMENT
#==============================================================================
# load config
instr_cfg = yaml.load(open('./retiga.yml', 'r'))

tiltAngles = instr_cfg['detector']['transform']['tilt_angles']
tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(3, 1)
chi = instr_cfg['oscillation_stage']['chi']
tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1)

rMat_d = makeDetectorRotMat(tiltAngles)
rMat_s = makeOscillRotMat([chi, 0.])

pixel_size = instr_cfg['detector']['pixels']['size']

nrows = instr_cfg['detector']['pixels']['rows']
ncols = instr_cfg['detector']['pixels']['columns']

row_dim = pixel_size[0] * nrows  # in mm
col_dim = pixel_size[1] * ncols  # in mm

x_col_edges = pixel_size[1] * (np.arange(ncols + 1) - 0.5 * ncols)
y_row_edges = pixel_size[0] * (np.arange(nrows + 1) - 0.5 * nrows)[::-1]

panel_dims = [(-0.5 * ncols * pixel_size[1], -0.5 * nrows * pixel_size[0]),
              (0.5 * ncols * pixel_size[1], 0.5 * nrows * pixel_size[0])]
Esempio n. 17
0
 def __init__(self, tilt=tilt_DFTL, tvec=tvec_DFLT):
     self.tilt = tilt
     self.rmat = xfcapi.makeDetectorRotMat(self.tilt)
     self.tvec = tvec
#Image Info
nrows = int((panel_dims[1][1] - panel_dims[0][1]) / float(pixel_pitch[0]))
ncols = int((panel_dims[1][0] - panel_dims[0][0]) / float(pixel_pitch[1]))
row_edges = (np.arange(nrows+1)*pixel_pitch[0] + panel_dims[0][1])[::-1]
col_edges = np.arange(ncols+1)*pixel_pitch[1] + panel_dims[0][0]


nframes = int(360./float(delta_ome))
ome_edges = np.arange(nframes + 1)*delta_ome - 180.


#extract transform objects; rotations and translations
# detector first, rotation, then translation
#  - rotation takes comps from det frame to lab
rMat_d = xfcapi.makeDetectorRotMat(detector_params[:3])
tVec_d = np.r_[detector_params[3:6]]

# rotation stage (omega)
#  - chi is ccw tilt about lab X; rMat_s is omega dependent
#  - takes comps in sample to lab frame
chi = detector_params[6]
tVec_s = np.zeros((3,1))

# crystal; this will be a list of things, computed from quaternions
#  - trivial case here...
rMat_c = np.eye(3)
tVec_c = np.zeros((3,1))


def make_reflection_patches(
    instr_cfg,
    tth_eta,
    ang_pixel_size,
    omega=None,
    tth_tol=0.2,
    eta_tol=1.0,
    rMat_c=np.eye(3),
    tVec_c=np.c_[0.0, 0.0, 0.0].T,
    distortion=distortion,
    npdiv=1,
    quiet=False,
    compute_areas_func=compute_areas,
):
    """
    prototype function for making angular patches on a detector

    panel_dims are [(xmin, ymin), (xmax, ymax)] in mm

    pixel_pitch is [row_size, column_size] in mm

    DISTORTION HANDING IS STILL A KLUDGE

    patches are:

                 delta tth
   d  ------------- ... -------------
   e  | x | x | x | ... | x | x | x |
   l  ------------- ... -------------
   t                 .
   a                 .
                     .
   e  ------------- ... -------------
   t  | x | x | x | ... | x | x | x |
   a  ------------- ... -------------

    """
    npts = len(tth_eta)

    # detector frame
    rMat_d = xfcapi.makeDetectorRotMat(instr_cfg["detector"]["transform"]["tilt_angles"])
    tVec_d = np.r_[instr_cfg["detector"]["transform"]["t_vec_d"]]
    pixel_size = instr_cfg["detector"]["pixels"]["size"]

    frame_nrows = instr_cfg["detector"]["pixels"]["rows"]
    frame_ncols = instr_cfg["detector"]["pixels"]["columns"]

    panel_dims = (
        -0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]],
        0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]],
    )
    row_edges = np.arange(frame_nrows + 1)[::-1] * pixel_size[1] + panel_dims[0][1]
    col_edges = np.arange(frame_ncols + 1) * pixel_size[0] + panel_dims[0][0]

    # sample frame
    chi = instr_cfg["oscillation_stage"]["chi"]
    tVec_s = np.r_[instr_cfg["oscillation_stage"]["t_vec_s"]]

    # data to loop
    # ...WOULD IT BE CHEAPER TO CARRY ZEROS OR USE CONDITIONAL?
    if omega is None:
        full_angs = np.hstack([tth_eta, np.zeros((npts, 1))])
    else:
        full_angs = np.hstack([tth_eta, omega.reshape(npts, 1)])
    patches = []
    for angs, pix in zip(full_angs, ang_pixel_size):
        # need to get angular pixel size
        rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]])

        ndiv_tth = npdiv * np.ceil(tth_tol / np.degrees(pix[0]))
        ndiv_eta = npdiv * np.ceil(eta_tol / np.degrees(pix[1]))

        tth_del = np.arange(0, ndiv_tth + 1) * tth_tol / float(ndiv_tth) - 0.5 * tth_tol
        eta_del = np.arange(0, ndiv_eta + 1) * eta_tol / float(ndiv_eta) - 0.5 * eta_tol

        # store dimensions for convenience
        #   * etas and tths are bin vertices, ome is already centers
        sdims = [len(eta_del) - 1, len(tth_del) - 1]

        # meshgrid args are (cols, rows), a.k.a (fast, slow)
        m_tth, m_eta = np.meshgrid(tth_del, eta_del)
        npts_patch = m_tth.size

        # calculate the patch XY coords from the (tth, eta) angles
        # * will CHEAT and ignore the small perturbation the different
        #   omega angle values causes and simply use the central value
        gVec_angs_vtx = np.tile(angs, (npts_patch, 1)) + np.radians(
            np.vstack([m_tth.flatten(), m_eta.flatten(), np.zeros(npts_patch)]).T
        )

        # will need this later
        rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]])

        # FOR ANGULAR MESH
        conn = gutil.cellConnectivity(sdims[0], sdims[1], origin="ll")
        gVec_c = xf.anglesToGVec(gVec_angs_vtx, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c)

        xy_eval_vtx = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c)
        if distortion is not None and len(distortion) == 2:
            xy_eval_vtx = distortion[0](xy_eval_vtx, distortion[1], invert=True)
            pass

        areas = compute_areas_func(xy_eval_vtx, conn)

        # EVALUATION POINTS
        #   * for lack of a better option will use centroids
        tth_eta_cen = gutil.cellCentroids(np.atleast_2d(gVec_angs_vtx[:, :2]), conn)
        gVec_angs = np.hstack([tth_eta_cen, np.tile(angs[2], (len(tth_eta_cen), 1))])
        gVec_c = xf.anglesToGVec(gVec_angs, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c)

        xy_eval = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c)
        if distortion is not None and len(distortion) == 2:
            xy_eval = distortion[0](xy_eval, distortion[1], invert=True)
            pass
        row_indices = gutil.cellIndices(row_edges, xy_eval[:, 1])
        col_indices = gutil.cellIndices(col_edges, xy_eval[:, 0])

        patches.append(
            (
                (gVec_angs_vtx[:, 0].reshape(m_tth.shape), gVec_angs_vtx[:, 1].reshape(m_tth.shape)),
                (xy_eval_vtx[:, 0].reshape(m_tth.shape), xy_eval_vtx[:, 1].reshape(m_tth.shape)),
                conn,
                areas.reshape(sdims[0], sdims[1]),
                (row_indices.reshape(sdims[0], sdims[1]), col_indices.reshape(sdims[0], sdims[1])),
            )
        )
        pass
    return patches
Esempio n. 20
0
def gen_trial_exp_data(grain_out_file,det_file,mat_file, x_ray_energy, mat_name, max_tth, comp_thresh, chi2_thresh, misorientation_bnd, \
                       misorientation_spacing,ome_range_deg, nframes, beam_stop_width):

    print('Loading Grain Data.....')
    #gen_grain_data
    ff_data = np.loadtxt(grain_out_file)

    #ff_data=np.atleast_2d(ff_data[2,:])

    exp_maps = ff_data[:, 3:6]
    t_vec_ds = ff_data[:, 6:9]

    #
    completeness = ff_data[:, 1]

    chi2 = ff_data[:, 2]

    n_grains = exp_maps.shape[0]

    rMat_c = rot.rotMatOfExpMap(exp_maps.T)

    cut = np.where(
        np.logical_and(completeness > comp_thresh, chi2 < chi2_thresh))[0]
    exp_maps = exp_maps[cut, :]
    t_vec_ds = t_vec_ds[cut, :]
    chi2 = chi2[cut]

    # Add Misorientation
    mis_amt = misorientation_bnd * np.pi / 180.
    spacing = misorientation_spacing * np.pi / 180.

    mis_steps = int(misorientation_bnd / misorientation_spacing)

    ori_pts = np.arange(-mis_amt, (mis_amt + (spacing * 0.999)), spacing)
    num_ori_grid_pts = ori_pts.shape[0]**3
    num_oris = exp_maps.shape[0]

    XsO, YsO, ZsO = np.meshgrid(ori_pts, ori_pts, ori_pts)

    grid0 = np.vstack([XsO.flatten(), YsO.flatten(), ZsO.flatten()]).T

    exp_maps_expanded = np.zeros([num_ori_grid_pts * num_oris, 3])
    t_vec_ds_expanded = np.zeros([num_ori_grid_pts * num_oris, 3])

    for ii in np.arange(num_oris):
        pts_to_use = np.arange(num_ori_grid_pts) + ii * num_ori_grid_pts
        exp_maps_expanded[pts_to_use, :] = grid0 + np.r_[exp_maps[ii, :]]
        t_vec_ds_expanded[pts_to_use, :] = np.r_[t_vec_ds[ii, :]]

    exp_maps = exp_maps_expanded
    t_vec_ds = t_vec_ds_expanded

    n_grains = exp_maps.shape[0]

    rMat_c = rot.rotMatOfExpMap(exp_maps.T)

    print('Loading Instrument Data.....')
    instr_cfg = yaml.load(open(det_file, 'r'))

    tiltAngles = instr_cfg['detector']['transform']['tilt_angles']
    tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(
        3, 1)
    #tVec_d[0] = -0.05
    chi = instr_cfg['oscillation_stage']['chi']
    tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1)

    rMat_d = makeDetectorRotMat(tiltAngles)
    rMat_s = makeOscillRotMat([chi, 0.])

    pixel_size = instr_cfg['detector']['pixels']['size']

    nrows = instr_cfg['detector']['pixels']['rows']
    ncols = instr_cfg['detector']['pixels']['columns']

    #    row_dim = pixel_size[0]*nrows # in mm
    #    col_dim = pixel_size[1]*ncols # in mm

    x_col_edges = pixel_size[1] * (np.arange(ncols + 1) - 0.5 * ncols)
    y_row_edges = pixel_size[0] * (np.arange(nrows + 1) - 0.5 * nrows)[::-1]

    panel_dims = [(-0.5 * ncols * pixel_size[1], -0.5 * nrows * pixel_size[0]),
                  (0.5 * ncols * pixel_size[1], 0.5 * nrows * pixel_size[0])]

    # a bit overkill, but grab max two-theta from all pixel transforms
    rx, ry = np.meshgrid(x_col_edges, y_row_edges)
    gcrds = detectorXYToGvec(
        np.vstack([rx.flatten(), ry.flatten()]).T, rMat_d, rMat_s, tVec_d,
        tVec_s, np.zeros(3))
    pixel_tth = gcrds[0][0]

    detector_params = np.hstack(
        [tiltAngles, tVec_d.flatten(), chi,
         tVec_s.flatten()])

    ome_period_deg = (ome_range_deg[0][0], (ome_range_deg[0][0] + 360.)
                      )  #degrees
    ome_step_deg = (ome_range_deg[0][1] -
                    ome_range_deg[0][0]) / nframes  #degrees

    ome_period = (ome_period_deg[0] * np.pi / 180.,
                  ome_period_deg[1] * np.pi / 180.)
    ome_range = [(ome_range_deg[0][0] * np.pi / 180.,
                  ome_range_deg[0][1] * np.pi / 180.)]
    ome_step = ome_step_deg * np.pi / 180.

    ome_edges = np.arange(nframes +
                          1) * ome_step + ome_range[0][0]  #fixed 2/26/17

    base = np.array([x_col_edges[0], y_row_edges[0], ome_edges[0]])
    deltas = np.array([
        x_col_edges[1] - x_col_edges[0], y_row_edges[1] - y_row_edges[0],
        ome_edges[1] - ome_edges[0]
    ])
    inv_deltas = 1.0 / deltas
    clip_vals = np.array([ncols, nrows])

    print('Loading Material Data.....')
    #Load Material Data
    materials = cpl.load(open(mat_file, "rb"))

    check = np.zeros(len(materials))
    for ii in np.arange(len(materials)):
        #print materials[ii].name
        check[ii] = materials[ii].name == mat_name

    mat_used = materials[np.where(check)[0][0]]

    #niti_mart.beamEnergy = valunits.valWUnit("wavelength","ENERGY",61.332,"keV")
    mat_used.beamEnergy = valunits.valWUnit("wavelength", "ENERGY",
                                            x_ray_energy, "keV")
    mat_used.planeData.exclusions = np.zeros(len(
        mat_used.planeData.exclusions),
                                             dtype=bool)

    if max_tth > 0.:
        mat_used.planeData.tThMax = np.amax(np.radians(max_tth))
    else:
        mat_used.planeData.tThMax = np.amax(pixel_tth)

    pd = mat_used.planeData

    print('Final Assembly.....')
    experiment = argparse.Namespace()
    # grains related information
    experiment.n_grains = n_grains  # this can be derived from other values...
    experiment.rMat_c = rMat_c  # n_grains rotation matrices (one per grain)
    experiment.exp_maps = exp_maps  # n_grains exp_maps -angle * rotation axis- (one per grain)

    experiment.plane_data = pd
    experiment.detector_params = detector_params
    experiment.pixel_size = pixel_size
    experiment.ome_range = ome_range
    experiment.ome_period = ome_period
    experiment.x_col_edges = x_col_edges
    experiment.y_row_edges = y_row_edges
    experiment.ome_edges = ome_edges
    experiment.ncols = ncols
    experiment.nrows = nrows
    experiment.nframes = nframes  # used only in simulate...
    experiment.rMat_d = rMat_d
    experiment.tVec_d = np.atleast_2d(detector_params[3:6]).T
    experiment.chi = detector_params[
        6]  # note this is used to compute S... why is it needed?
    experiment.tVec_s = np.atleast_2d(detector_params[7:]).T
    experiment.rMat_c = rMat_c
    experiment.distortion = None
    experiment.panel_dims = panel_dims  # used only in simulate...
    experiment.base = base
    experiment.inv_deltas = inv_deltas
    experiment.clip_vals = clip_vals
    experiment.bsw = beam_stop_width

    if mis_steps == 0:
        nf_to_ff_id_map = cut
    else:
        nf_to_ff_id_map = np.tile(cut, 27 * mis_steps)

    return experiment, nf_to_ff_id_map
Esempio n. 21
0
epsf = 2.2e-16

vec = np.array([[
    random.uniform(-np.pi, np.pi),
    random.uniform(-np.pi, np.pi),
    random.uniform(-np.pi, np.pi)
]])
vHat1 = xf.unitVector(vec.T)
vHat2 = xfcapi.unitRowVector(vec)
print "unitVector results match:             ", np.linalg.norm(
    vHat1.T - vHat2) / np.linalg.norm(vHat1) < epsf

tAng = np.array(
    [0.0011546340766314521, -0.0040527538387122993, -0.0026221336905160211])
rMat1 = xf.makeDetectorRotMat(tAng)
rMat2 = xfcapi.makeDetectorRotMat(tAng)
print "makeDetectorRotMat results match:     ", np.linalg.norm(
    rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf

oAng = np.array([-0.0011591608938627839, 0.0011546340766314521])
rMat1 = xf.makeOscillRotMat(oAng)
rMat2 = xfcapi.makeOscillRotMat(oAng)
print "makeOscillRotMat results match:       ", np.linalg.norm(
    rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf

eMap = np.array([0.66931818, -0.98578066, 0.73593251])
rMat1 = xf.makeRotMatOfExpMap(eMap)
rMat2 = xfcapi.makeRotMatOfExpMap(eMap)
print "makeRotMatOfExpMap results match:     ", np.linalg.norm(
    rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf
Esempio n. 22
0
def make_reflection_patches(instr_cfg,
                            tth_eta,
                            ang_pixel_size,
                            omega=None,
                            tth_tol=0.2,
                            eta_tol=1.0,
                            rMat_c=np.eye(3),
                            tVec_c=np.c_[0., 0., 0.].T,
                            distortion=distortion,
                            npdiv=1,
                            quiet=False,
                            compute_areas_func=compute_areas):
    """
    prototype function for making angular patches on a detector

    panel_dims are [(xmin, ymin), (xmax, ymax)] in mm

    pixel_pitch is [row_size, column_size] in mm

    DISTORTION HANDING IS STILL A KLUDGE

    patches are:

                 delta tth
   d  ------------- ... -------------
   e  | x | x | x | ... | x | x | x |
   l  ------------- ... -------------
   t                 .
   a                 .
                     .
   e  ------------- ... -------------
   t  | x | x | x | ... | x | x | x |
   a  ------------- ... -------------

    """
    npts = len(tth_eta)

    # detector frame
    rMat_d = xfcapi.makeDetectorRotMat(
        instr_cfg['detector']['transform']['tilt_angles'])
    tVec_d = np.r_[instr_cfg['detector']['transform']['t_vec_d']]
    pixel_size = instr_cfg['detector']['pixels']['size']

    frame_nrows = instr_cfg['detector']['pixels']['rows']
    frame_ncols = instr_cfg['detector']['pixels']['columns']

    panel_dims = (
        -0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]],
        0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]])
    row_edges = np.arange(frame_nrows +
                          1)[::-1] * pixel_size[1] + panel_dims[0][1]
    col_edges = np.arange(frame_ncols + 1) * pixel_size[0] + panel_dims[0][0]

    # sample frame
    chi = instr_cfg['oscillation_stage']['chi']
    tVec_s = np.r_[instr_cfg['oscillation_stage']['t_vec_s']]

    # data to loop
    # ...WOULD IT BE CHEAPER TO CARRY ZEROS OR USE CONDITIONAL?
    if omega is None:
        full_angs = np.hstack([tth_eta, np.zeros((npts, 1))])
    else:
        full_angs = np.hstack([tth_eta, omega.reshape(npts, 1)])
    patches = []
    for angs, pix in zip(full_angs, ang_pixel_size):
        # need to get angular pixel size
        rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]])

        ndiv_tth = npdiv * np.ceil(tth_tol / np.degrees(pix[0]))
        ndiv_eta = npdiv * np.ceil(eta_tol / np.degrees(pix[1]))

        tth_del = np.arange(
            0, ndiv_tth + 1) * tth_tol / float(ndiv_tth) - 0.5 * tth_tol
        eta_del = np.arange(
            0, ndiv_eta + 1) * eta_tol / float(ndiv_eta) - 0.5 * eta_tol

        # store dimensions for convenience
        #   * etas and tths are bin vertices, ome is already centers
        sdims = [len(eta_del) - 1, len(tth_del) - 1]

        # meshgrid args are (cols, rows), a.k.a (fast, slow)
        m_tth, m_eta = np.meshgrid(tth_del, eta_del)
        npts_patch = m_tth.size

        # calculate the patch XY coords from the (tth, eta) angles
        # * will CHEAT and ignore the small perturbation the different
        #   omega angle values causes and simply use the central value
        gVec_angs_vtx = np.tile(angs, (npts_patch, 1)) \
                        + np.radians(
                            np.vstack([m_tth.flatten(),
                                       m_eta.flatten(),
                                       np.zeros(npts_patch)
                                       ]).T
                                     )

        # will need this later
        rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]])

        # FOR ANGULAR MESH
        conn = gutil.cellConnectivity(sdims[0], sdims[1], origin='ll')
        gVec_c = xf.anglesToGVec(gVec_angs_vtx,
                                 xf.bVec_ref,
                                 xf.eta_ref,
                                 rMat_s=rMat_s,
                                 rMat_c=rMat_c)

        xy_eval_vtx = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c,
                                              tVec_d, tVec_s, tVec_c)
        if distortion is not None and len(distortion) == 2:
            xy_eval_vtx = distortion[0](xy_eval_vtx,
                                        distortion[1],
                                        invert=True)
            pass

        areas = compute_areas_func(xy_eval_vtx, conn)

        # EVALUATION POINTS
        #   * for lack of a better option will use centroids
        tth_eta_cen = gutil.cellCentroids(np.atleast_2d(gVec_angs_vtx[:, :2]),
                                          conn)
        gVec_angs = np.hstack(
            [tth_eta_cen, np.tile(angs[2], (len(tth_eta_cen), 1))])
        gVec_c = xf.anglesToGVec(gVec_angs,
                                 xf.bVec_ref,
                                 xf.eta_ref,
                                 rMat_s=rMat_s,
                                 rMat_c=rMat_c)

        xy_eval = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c,
                                          tVec_d, tVec_s, tVec_c)
        if distortion is not None and len(distortion) == 2:
            xy_eval = distortion[0](xy_eval, distortion[1], invert=True)
            pass
        row_indices = gutil.cellIndices(row_edges, xy_eval[:, 1])
        col_indices = gutil.cellIndices(col_edges, xy_eval[:, 0])

        patches.append(
            ((gVec_angs_vtx[:, 0].reshape(m_tth.shape),
              gVec_angs_vtx[:, 1].reshape(m_tth.shape)),
             (xy_eval_vtx[:, 0].reshape(m_tth.shape),
              xy_eval_vtx[:, 1].reshape(m_tth.shape)), conn,
             areas.reshape(sdims[0],
                           sdims[1]), (row_indices.reshape(sdims[0], sdims[1]),
                                       col_indices.reshape(sdims[0],
                                                           sdims[1]))))
        pass
    return patches
Esempio n. 23
0
    nframes += int((ome_range[i][1]-ome_range[i][0])/ome_step)
    pass
ome_edges = np.arange(nframes+1)*ome_step

#==============================================================================
# %% INSTRUMENT
#==============================================================================
# load config
instr_cfg = yaml.load(open('./retiga.yml', 'r'))

tiltAngles = instr_cfg['detector']['transform']['tilt_angles']
tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(3, 1)
chi = instr_cfg['oscillation_stage']['chi']
tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1)

rMat_d = makeDetectorRotMat(tiltAngles)
rMat_s = makeOscillRotMat([chi, 0.])

pixel_size = instr_cfg['detector']['pixels']['size']

nrows = instr_cfg['detector']['pixels']['rows']
ncols = instr_cfg['detector']['pixels']['columns']

row_dim = pixel_size[0]*nrows # in mm
col_dim = pixel_size[1]*ncols # in mm

x_col_edges = pixel_size[1]*(np.arange(ncols+1) - 0.5*ncols)
y_row_edges = pixel_size[0]*(np.arange(nrows+1) - 0.5*nrows)[::-1]

panel_dims = [(-0.5*ncols*pixel_size[1],
               -0.5*nrows*pixel_size[0]),