Esempio n. 1
0
 def test_log(self):
     #Declare Class object
     test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability)
     # Log prob function
     prob = test.log_prob(observation_tuple, quantities_observations)
     prob = round(prob, 3)
     self.assertEqual(-67.920, prob)
Esempio n. 2
0
 def test_viterbi(self):
     #Declare Class object
     test = hmm(states, possible_observation, start_probability,
                transition_probability, emission_probability)
     # Viterbi algorithm
     vit_out = (test.viterbi(observations))
     self.assertEqual(['t', 't', 't', 't'], vit_out)
Esempio n. 3
0
def generate_model(input_dict, input_layout):
 
    resource_path = config['config']['resources']
    layout_file = resource_path + input_layout + '.json'
     
    print("Generating Transition Matrix...")
    transitionMatrix = transition_matrix.create_transition_matrix(input_dict)
 
    # Normalizing transition matrix
    header, normalized_transition_matrix = normalize_matrix.normalize_dataframe(transitionMatrix,1) # 1 for normalizing with sklearn method, 0 for the other implementation
 
    transition_dataframe = pd.DataFrame(normalized_transition_matrix, index=header, columns=header)
    
    print("Generating Emission Matrix...")
 
    obs, emissionMatrix = emission_matrix.generate_emission_matrix(layout_file)
    emission_dataframe = pd.DataFrame(emissionMatrix, index=obs, columns=obs)
 
    start_prob = np.asmatrix(transition_dataframe.values[0])
 
    states =  list(transition_dataframe.index.values)
 
    observation = list(transition_dataframe.index.values)
 
    transition = np.asmatrix(transition_dataframe.values)
 
    emission = np.asmatrix(emission_dataframe.values)
 
    #Generate the HMM model using Start prob, Transaction, States, Emissions and Observations
    model = hidden_markov.hmm(states,observation,start_prob,transition,emission)
 
    return model, states, observation, start_prob, transition_dataframe, emission_dataframe
Esempio n. 4
0
 def test_train_hmm(self):
     #Declare Class object
     test = hmm(states, possible_observation, start_probability,
                transition_probability, emission_probability)
     # Baum welch Algorithm
     num_iter = 1000
     e, t, s = test.train_hmm(observation_tuple, num_iter,
                              quantities_observations)
Esempio n. 5
0
 def test_log(self):
     #Declare Class object
     test = hmm(states, possible_observation, start_probability,
                transition_probability, emission_probability)
     # Log prob function
     prob = test.log_prob(observation_tuple, quantities_observations)
     prob = round(prob, 3)
     self.assertEqual(-67.920, prob)
Esempio n. 6
0
    def test_forward(self):

        #Declare Class object
        test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability)

        # Forward algorithm
        forw_prob = (test.forward_algo(observations))
        forw_prob = round(forw_prob, 5)
        self.assertEqual(0.05153, forw_prob)
Esempio n. 7
0
def test_scale():

    states = ('s', 't')

    #list of possible observations
    possible_observation = ('A', 'B')

    state_map = {0: 's', 1: 't'}

    # The observations that we observe and feed to the model
    observations = ('A', 'B', 'B', 'A')
    obs4 = ('B', 'A', 'B')

    #  obs3 = ('R', 'W','W','W')
    #  obs2 = ('W', 'W','R','R')

    observation_tuple = []
    observation_tuple.extend([observations, obs4])
    quantities_observations = [10, 20]

    # Numpy arrays of the data
    start_probability = np.matrix('0.5 0.5 ')
    transition_probability = np.matrix('0.6 0.4 ;  0.3 0.7 ')
    emission_probability = np.matrix('0.3 0.7 ; 0.4 0.6 ')

    test = hmm(states, possible_observation, start_probability,
               transition_probability, emission_probability)

    # Forward algorithm
    print(test.forward_algo(observations))

    # Viterbi algorithm
    print("")
    print(test.viterbi(observations))

    # start_prob,em_prob,trans_prob=start_probability,emission_probability,transition_probability
    prob = test.log_prob(observation_tuple, quantities_observations)
    print("probability of sequence with original parameters : %f" % (prob))
    print("")

    num_iter = 1000

    print("applied Baum welch on")
    print(observation_tuple)

    e, t, s = test.train_hmm(observation_tuple, num_iter,
                             quantities_observations)
    print("parameters emission,transition and start")
    print(e)
    print("")
    print(t)
    print("")
    print(s)

    prob = test.log_prob(observation_tuple, quantities_observations)
    print("probability of sequence after %d iterations : %f" %
          (num_iter, prob))
Esempio n. 8
0
    def test_forward(self):

        #Declare Class object
        test = hmm(states, possible_observation, start_probability,
                   transition_probability, emission_probability)

        # Forward algorithm
        forw_prob = (test.forward_algo(observations))
        forw_prob = round(forw_prob, 5)
        self.assertEqual(0.05153, forw_prob)
Esempio n. 9
0
 def calibrate_sensor_and_transition_matrices(
         self,
         observation_sequences: "a list of tuples of observation sequences",
         update_models=False,
         debug=False):
     '''Given a list of observation sequences, calibrates the sensor and transition matrices to most likely probabilities
     based on Baum-Welch algorithm. Currently does not give consistent results - using EM should always converge to the same
     distribution parameters for 'reasonable' initial conditions.
     
     Assuming that subsequent readings are sampled at uniformly spaced timesteps of x seconds. This means will have to perform 1.5 updates
     if the RAV moves 1.5 'units'
     '''
     states = [i for i in range(self.no_battery_levels)]
     possible_observations = [i for i in range(self.no_battery_levels)]
     print(np.matrix(self.transition_model("move")).shape)
     print(np.matrix(self.sensor_matrix).shape)
     markov_hmm = hmm(states, possible_observations,
                      self.initial_distribution.transpose(),
                      self.transition_model("move"), self.sensor_matrix)
     num_iterations = 10000000
     #hard code in quantities of observations as 1
     self.trained_sensor_model, self.trained_transition_model, self.trained_initial_distribution = markov_hmm.train_hmm(
         observation_sequences, num_iterations,
         [1 for _ in range(len(observation_sequences))])
     # e,t,s contain new emission transition and start probabilities
     if debug:
         print(
             "Transition model frobenius error: ",
             np.linalg.norm(
                 self.trained_transition_model -
                 np.matrix(self.transition_model("move")), 'fro'))
         print(
             "Sensor model frobenius error: ",
             np.linalg.norm(
                 self.trained_sensor_model - np.matrix(self.sensor_matrix),
                 'fro'))
         print(
             "Initial distribution l2 error: ",
             np.linalg.norm(
                 self.trained_initial_distribution -
                 self.initial_distribution, 2))
     if update_models:
         self.__update_transition_model(self.trained_transition_model)
         self.__update_sensor_model(self.trained_sensor_model)
         if debug:
             print("The battery transition model has now been set to {}".
                   format(self.trained_transition_model))
             print("The sensor model has now been set to {}".format(
                 self.trained_sensor_model))
     else:
         if debug:
             print("Using user-specified transition model: {}".format(
                 self.transition_model('move')))
             print("Using user-specified sensor model: {}".format(
                 self.sensor_matrix))
Esempio n. 10
0
def test_scale():

    states = ('s', 't')

    #list of possible observations
    possible_observation = ('A','B' )

    state_map = { 0 :'s', 1: 't' }

    # The observations that we observe and feed to the model
    observations = ('A', 'B','B','A')
    obs4 = ('B', 'A','B')

    #  obs3 = ('R', 'W','W','W')
    #  obs2 = ('W', 'W','R','R')

    observation_tuple = []
    observation_tuple.extend( [observations,obs4] )
    quantities_observations = [10, 20]

    # Numpy arrays of the data
    start_probability = np.matrix( '0.5 0.5 ')
    transition_probability = np.matrix('0.6 0.4 ;  0.3 0.7 ')
    emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' )

    test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability)

    # Forward algorithm
    print (test.forward_algo(observations))

    # Viterbi algorithm
    print ("")
    print (test.viterbi(observations))

    # start_prob,em_prob,trans_prob=start_probability,emission_probability,transition_probability
    prob = test.log_prob(observation_tuple, quantities_observations)
    print ("probability of sequence with original parameters : %f"%(prob))
    print ("")

    num_iter=1000

    print ("applied Baum welch on")
    print (observation_tuple)

    e,t,s = test.train_hmm(observation_tuple,num_iter,quantities_observations)
    print("parameters emission,transition and start")
    print(e)
    print("")
    print(t)
    print("")
    print(s)

    prob = test.log_prob(observation_tuple, quantities_observations)
    print ("probability of sequence after %d iterations : %f"%(num_iter,prob))
Esempio n. 11
0
def generate_model_with_input(states, observation, start_prob, transition, emission):
 
    # Convert elements format to HMM library
    start_prob =  np.asmatrix(start_prob)
    emission = np.asmatrix(emission.values)
    transition = np.asmatrix(transition.values)
 
    #Generate the HMM model using Start prob, Transaction, States, Emissions and Observations
    model = hidden_markov.hmm(states,observation,start_prob,transition,emission)
 
    return model
Esempio n. 12
0
def init_model(possible_states, possible_obs, possible_states_array,
               possible_obs_array, train_states_value_seq, train_obs_seq):
    start_matrix = create_start_matrix(len(possible_states))
    trans_matrix = create_trans_matrix(train_states_value_seq,
                                       len(possible_states))
    em_matrix = create_em_matrix(train_states_value_seq, train_obs_seq,
                                 len(possible_states), len(possible_obs))

    smarthouse_model = hmm(possible_states_array, possible_obs_array,
                           start_matrix, trans_matrix, em_matrix)

    return smarthouse_model
Esempio n. 13
0
    def __init__(self, states, evidence, probability, transition, emission):
        #Hidden states of the net
        self.states = states
        #Evidence or observable
        self.evidence = evidence
        #starting probability for the initialization
        self.probability = probability
        #matrix for transition probability
        self.transition = transition
        #matrix of emission
        self.emission = emission

        #Call the hidden_markov library model and initialize the model
        self.model = hidden_markov.hmm(states, evidence, probability,
                                       transition, emission)
    def __init__(self, n_states, n_possible_observations):
        # Number of states
        self.n_states = n_states
        # Number of possible observations
        self.n_possible_observations = n_possible_observations
        # Create states and possible observations
        self.states, self.possible_observations = self.__init_names()
        # Create transition matrix, emission matrix and start probability matrix
        self.pi_prob, self.transition_prob, self.emission_prob = self.__init_probabilities(
        )

        # Create model
        self.__model = hmm(states=list(self.states),
                           observations=list(self.possible_observations),
                           start_prob=np.matrix(self.pi_prob),
                           trans_prob=np.matrix(self.transition_prob),
                           em_prob=np.matrix(self.emission_prob))
Esempio n. 15
0
            c += 1
            temp1[i + 1] = -1

        for k in range(0, len(temp1)):
            if (temp1[k] == -1):
                temp1[k] = 1 / c
            elif (temp1[k] == None):
                temp1[k] = 0
        temp.append(temp1)
    return np.array(temp)  # Left,Right,Up,Down


#start_probability = inpro(grid)
#transition_probability = trans(grid)                        #each row is one cell

states = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']  #('s', 't')
possible_observation = list()
for i in range(0, 118):
    possible_observation.append(str(i / 10))
#print(possible_observation)
start_probability = np.matrix(inpro(grid)[0])

transition_probability = np.matrix(trans(grid))
emission_probability = np.matrix(emm(l1, u1))

observation = ('6.3', '5.6', '7.6', '9.5', '6.0', '9.3', '8.0', '6.4', '5.0',
               '3.8', '3.3')
test = hmm(states, possible_observation, start_probability,
           transition_probability, emission_probability)
print(test.viterbi(observation))
Esempio n. 16
0
    for i in range(1, t):
        for j in range(0, q):
            delt[i, j] = np.max(np.multiply(delt[i - 1, :],
                                            T[:, j])) * M[j, int(Z[i] - 1)]
            pre[i, j] = np.argmax(np.multiply(delt[i - 1, :], T[:, j]))
    s_t = np.argmax(delt[-1, :]) + 1
    path = np.zeros(t)
    path[-1] = s_t
    for k in range(t - 2, -1, -1):
        path[k] = pre[k + 1, int(path[k + 1] - 1)] + 1
    p = delt[-1, s_t]
    return path, p


if __name__ == "__main__":
    print("whack a mole")
    M = np.array([[0.5, 0.5], [0.9, 0.1], [0.1, 0.9]])
    Z = np.array([1, 1, 1, 2, 2, 2, 1, 2, 2, 1])
    T = np.array([[0.1, 0.4, 0.5], [0.4, 0, 0.6], [0, 0.6, 0.4]])
    s0 = np.array([0, 0, 1])

    path, p = Viterbi(M, Z, T, s0)
    print("Most Likely Path:")
    print(path)
    print("Joint probability")
    print(p)
    states = [1, 2, 3]
    obs = [12]
    h = hm.hmm(states, obs, np.asmatrix(s0), np.asmatrix(T), np.asmatrix(M))
    print(h.viterbi(Z.tolist()))
Esempio n. 17
0
File: test.py Progetto: cla93/bigram
import nltk

parser = argparse.ArgumentParser()
parser.add_argument('-t',
                    '--train',
                    help='Training or not',
                    action='store_true')
args = parser.parse_args()
if args.train:
    print "With Training"
    prior = hmm_init.prior_probability()
    transitions = hmm_init.transition_model()
    states = hmm_init.states()
    possible_obs = hmm_init.observation()
    emissions = hmm_init.emission_probability(utility.adjacents_bigrams())
    model = hmlib.hmm(states, possible_obs, prior, transitions, emissions)
    afile = open('training/model', 'wb')
    pickle.dump(model, afile)
    afile.close()
    print "End of training\n"

else:
    print "Without Training\n"
    afile = open('training/model', 'rb')
    model = pickle.load(afile)
    afile.close()
#print len(states),len(emissions)

states = model.states

for filename in glob.glob('test/Pontifex_test_of_remains.txt'):
Esempio n. 18
0
        _, frame = cap.read()
        mask = segment(frame, lower, upper)
        _, thresh = cv2.threshold(mask, 127, 255, 0)
        hand = get_my_hand(thresh)
        features = extract_features(hand, grid)
        pred = classifier.predict([features])
        print('%5d' % (frame_no), end=': ')
        print(pred)
        pred = pred.tolist()
        obs.append(pred)
        frame_no += 1
    except:
        break
cap.release()

print(obs)
states = ('gaf0', 'gaf1')
observations = ('0', '1')
start_prob = np.matrix('0.5 0.5')
transition_prob = np.matrix('1.0 0.0 ; 0.0 1.0')
emission_prob = np.matrix('0.7 0.3 ; 1.0 0 ')

good_afternoon = hm.hmm(states, observations, start_prob, transition_prob,
                        emission_prob)

observed = [('0', '0', '0', '0', '1', '1')]
observed.extend(('0', '0', '1'))
e, t, s = good_afternoon.train_hmm(obs, 30, [10, 20])
print(e)
print(t)
print(s)
Esempio n. 19
0
        nod[i] = noonSum[h] / totalNoon
    if (findpoint(h, eve_max_ptns)):
        ed[i] = eveningSum[h] / totalEvening
emit_p = [0 for x in range(len(states))]
emit_p[0] = md
emit_p[1] = nod
emit_p[2] = ed
emit_p[3] = nd
emit_p = np.asmatrix(emit_p)
trans_p = np.asmatrix(trans_p)
start_p = np.asmatrix(start_p)

# In[138]:

#create an HMM Class
t = hmm(states, obs, start_p, trans_p, emit_p)

# In[139]:


#calculating alpha
def calc_alpha(a, b):
    x1 = math.floor(a / 100)
    x2 = math.floor(b / 100)
    y1 = (a % 100)
    y2 = (b % 100)
    d = math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))

    if (d == 0):
        return 1
    else:
Esempio n. 20
0
 def test_train_hmm(self):
     #Declare Class object
     test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability)
     # Baum welch Algorithm
     num_iter=1000
     e,t,s = test.train_hmm(observation_tuple,num_iter,quantities_observations)
import numpy as np
from hidden_markov import hmm

ob_types = ('W', 'N')

states = ('L', 'M')

observations = ('W', 'W', 'W', 'N')

start = np.matrix('0.1 0.9')
transition = np.matrix('0.7 0.3 ; 0.1 0.9')
emission = np.matrix('0.2 0.8 ; 0.4 0.6')

_hmm = hmm(states, ob_types, start, transition, emission)

print("Forward algorithm: ")
print(_hmm.forward_algo(observations))

print("\nViterbi algorithm: ")
print(_hmm.viterbi(observations))
Esempio n. 22
0
 def test_viterbi(self):
     #Declare Class object
     test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability)
     # Viterbi algorithm
     vit_out = (test.viterbi(observations))
     self.assertEqual(['t','t','t','t'] , vit_out)
emis_prob = np.random.random((len(states), num_observable))
emis_prob = np.asmatrix(emis_prob)

for i, n in enumerate(start_prob):
    for j, m in enumerate(n):
        start_prob[i][j] = start_prob[i][j] / np.sum(n)

for i, n in enumerate(trans_prob):
    for j, m in enumerate(n):
        trans_prob[i][j] = trans_prob[i][j] / np.sum(n)

for i, n in enumerate(emis_prob):
    for j, m in enumerate(n):
        emis_prob[i][j] = emis_prob[i][j] / np.sum(n)

print len(states)
print num_observable
print start_prob.shape
print trans_prob.shape
print emis_prob.shape

print "Starting with hmm"
test = hmm(states, list_observables, start_prob, trans_prob, emis_prob)
print "Done with hmm"

iterations = 1
print "Starting with Baum-Welch"
e, t, s = test.train_hmm(observations, iterations, quantities)
print "Done with Baum-Welch"