Esempio n. 1
0
def train(args):
  # set random seed
  torch.manual_seed(args.seed)
  np.random.seed(args.seed)

  # init model and optimizer
  if args.verbose:
    print("Training baseline model:" if args.baseline else "Training HNN model:")

  output_dim = args.input_dim if args.baseline else 2
  nn_model = MLP(args.input_dim, args.hidden_dim, output_dim, args.nonlinearity)
  model = HNN(args.input_dim, differentiable_model=nn_model,
            field_type=args.field_type, baseline=args.baseline)
  optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=0)

  # arrange data
  data = get_dataset(args.name, args.save_dir, verbose=True)
  x = torch.tensor( data['coords'], requires_grad=True, dtype=torch.float32)
  test_x = torch.tensor( data['test_coords'], requires_grad=True, dtype=torch.float32)
  dxdt = torch.Tensor(data['dcoords'])
  test_dxdt = torch.Tensor(data['test_dcoords'])

  # vanilla train loop
  stats = {'train_loss': [], 'test_loss': []}
  for step in range(args.total_steps+1):

    # train step
    ixs = torch.randperm(x.shape[0])[:args.batch_size]
    dxdt_hat = model.time_derivative(x[ixs])
    dxdt_hat += args.input_noise * torch.randn(*x[ixs].shape) # add noise, maybe
    loss = L2_loss(dxdt[ixs], dxdt_hat)
    loss.backward()
    grad = torch.cat([p.grad.flatten() for p in model.parameters()]).clone()
    optim.step() ; optim.zero_grad()

    # run test data
    test_ixs = torch.randperm(test_x.shape[0])[:args.batch_size]
    test_dxdt_hat = model.time_derivative(test_x[test_ixs])
    test_dxdt_hat += args.input_noise * torch.randn(*test_x[test_ixs].shape) # add noise, maybe
    test_loss = L2_loss(test_dxdt[test_ixs], test_dxdt_hat)

    # logging
    stats['train_loss'].append(loss.item())
    stats['test_loss'].append(test_loss.item())
    if args.verbose and step % args.print_every == 0:
      print("step {}, train_loss {:.4e}, test_loss {:.4e}, grad norm {:.4e}, grad std {:.4e}"
          .format(step, loss.item(), test_loss.item(), grad@grad, grad.std()))

  train_dxdt_hat = model.time_derivative(x)
  train_dist = (dxdt - train_dxdt_hat)**2
  test_dxdt_hat = model.time_derivative(test_x)
  test_dist = (test_dxdt - test_dxdt_hat)**2
  print('Final train loss {:.4e} +/- {:.4e}\nFinal test loss {:.4e} +/- {:.4e}'
    .format(train_dist.mean().item(), train_dist.std().item()/np.sqrt(train_dist.shape[0]),
            test_dist.mean().item(), test_dist.std().item()/np.sqrt(test_dist.shape[0])))
  return model, stats
Esempio n. 2
0
def train(args):
    # set random seed
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

    # init model and optimizer
    if args.verbose:
        print("Training baseline model:" if args.baseline else "Training HNN model:")

    output_dim = args.input_dim if args.baseline else 2
    nn_model = MLP(args.input_dim, 400, output_dim, args.nonlinearity)
    model = HNN(args.input_dim, differentiable_model=nn_model,
                field_type=args.field_type, baseline=args.baseline)
    optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=1e-4)

    # the data API is different
    # make sure it is a fair comparison
    # generate the data the same way as in the SymODEN
    # compute the time derivative based on the generated data
    us = [0.0]
    data = get_dataset(seed=args.seed, save_dir=args.save_dir, 
                    rad=args.rad, us=us, samples=50, timesteps=45) 
    
    # arrange data 

    train_x, t_eval = data['x'][0,:,:,0:2], data['t']
    test_x, t_eval = data['test_x'][0,:,:,0:2], data['t']

    train_dxdt = (train_x[1:,:,:] - train_x[:-1,:,:]) / (t_eval[1] - t_eval[0])
    test_dxdt = (test_x[1:,:,:] - test_x[:-1,:,:]) / (t_eval[1] - t_eval[0])

    train_x = train_x[0:-1,:,:].reshape((-1,2))
    test_x = test_x[0:-1,:,:].reshape((-1,2))
    test_dxdt = test_dxdt.reshape((-1,2))
    train_dxdt = train_dxdt.reshape((-1,2))
    
    x = torch.tensor( train_x, requires_grad=True, dtype=torch.float32)
    test_x = torch.tensor( test_x, requires_grad=True, dtype=torch.float32)
    dxdt = torch.Tensor(train_dxdt)
    test_dxdt = torch.Tensor(test_dxdt)

    # vanilla train loop
    stats = {'train_loss': [], 'test_loss': []}
    for step in range(args.total_steps+1):
        
        # train step
        dxdt_hat = model.rk4_time_derivative(x) if args.use_rk4 else model.time_derivative(x)
        loss = L2_loss(dxdt, dxdt_hat)
        loss.backward() ; optim.step() ; optim.zero_grad()
        
        # run test data
        test_dxdt_hat = model.rk4_time_derivative(test_x) if args.use_rk4 else model.time_derivative(test_x)
        test_loss = L2_loss(test_dxdt, test_dxdt_hat)

        # logging
        stats['train_loss'].append(loss.item())
        stats['test_loss'].append(test_loss.item())
        if args.verbose and step % args.print_every == 0:
            print("step {}, train_loss {:.4e}, test_loss {:.4e}".format(step, loss.item(), test_loss.item()))

    train_dxdt_hat = model.time_derivative(x)
    train_dist = (dxdt - train_dxdt_hat)**2
    test_dxdt_hat = model.time_derivative(test_x)
    test_dist = (test_dxdt - test_dxdt_hat)**2
    print('Final train loss {:.4e} +/- {:.4e}\nFinal test loss {:.4e} +/- {:.4e}'
        .format(train_dist.mean().item(), train_dist.std().item()/np.sqrt(train_dist.shape[0]),
                test_dist.mean().item(), test_dist.std().item()/np.sqrt(test_dist.shape[0])))

    return model, stats
Esempio n. 3
0
def train(args):
    # set random seed
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

    # init model and optimizer
    if args.verbose:
        print("Training baseline model:" if args.
              baseline else "Training HNN model:")

    output_dim = args.input_dim if args.baseline else 2
    nn_model = MLP(args.input_dim, args.hidden_dim, output_dim,
                   args.nonlinearity)
    model = HNN(args.input_dim,
                differentiable_model=nn_model,
                field_type=args.field_type,
                baseline=args.baseline)
    optim = torch.optim.Adam(model.parameters(),
                             args.learn_rate,
                             weight_decay=1e-4)

    # arrange data
    data = get_dataset(seed=args.seed)
    x = torch.tensor(data['x'], requires_grad=True, dtype=torch.float32)
    test_x = torch.tensor(data['test_x'],
                          requires_grad=True,
                          dtype=torch.float32)
    dxdt = torch.Tensor(data['dx'])
    test_dxdt = torch.Tensor(data['test_dx'])

    # vanilla train loop
    stats = {'train_loss': [], 'test_loss': []}
    for step in range(args.total_steps + 1):

        # train step
        dxdt_hat = model.rk4_time_derivative(
            x) if args.use_rk4 else model.time_derivative(x)
        loss = L2_loss(dxdt, dxdt_hat)
        loss.backward()
        optim.step()
        optim.zero_grad()

        # run test data
        test_dxdt_hat = model.rk4_time_derivative(
            test_x) if args.use_rk4 else model.time_derivative(test_x)
        test_loss = L2_loss(test_dxdt, test_dxdt_hat)

        # logging
        stats['train_loss'].append(loss.item())
        stats['test_loss'].append(test_loss.item())
        if args.verbose and step % args.print_every == 0:
            print("step {}, train_loss {:.4e}, test_loss {:.4e}".format(
                step, loss.item(), test_loss.item()))

    train_dxdt_hat = model.time_derivative(x)
    train_dist = (dxdt - train_dxdt_hat)**2
    test_dxdt_hat = model.time_derivative(test_x)
    test_dist = (test_dxdt - test_dxdt_hat)**2
    print(
        'Final train loss {:.4e} +/- {:.4e}\nFinal test loss {:.4e} +/- {:.4e}'
        .format(train_dist.mean().item(),
                train_dist.std().item() / np.sqrt(train_dist.shape[0]),
                test_dist.mean().item(),
                test_dist.std().item() / np.sqrt(test_dist.shape[0])))

    return model, stats
Esempio n. 4
0
def train(args):
    if torch.cuda.is_available() and not args.cpu:
        device = torch.device("cuda:0")
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.empty_cache()
        print("Running on the GPU")
    else:
        device = torch.device("cpu")
        print("Running on the CPU")

    # set random seed
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

    print("{} {}".format(args.folder, args.speed))
    print("Training scaled model:" if args.scaled else "Training noisy model:")
    print('{} pairs of coords in latent space '.format(args.latent_dim))

    #using universal autoencoder, pre-encode the training points
    autoencoder = MLPAutoencoder(args.input_dim_ae,
                                 args.hidden_dim,
                                 args.latent_dim * 2,
                                 nonlinearity='relu')
    full_model = PixelHNN(args.latent_dim * 2,
                          args.hidden_dim,
                          autoencoder=autoencoder,
                          nonlinearity=args.nonlinearity,
                          baseline=args.baseline)
    path = "{}/saved_models/{}.tar".format(args.save_dir, args.ae_path)
    full_model.load_state_dict(torch.load(path))
    full_model.eval()
    autoencoder_model = full_model.autoencoder

    # get dataset (no test data for now)
    data = get_dataset(args.folder,
                       args.speed,
                       scaled=args.scaled,
                       split=args.split_data,
                       experiment_dir=args.experiment_dir,
                       tensor=True)
    gcoords = autoencoder_model.encode(data).cpu().detach().numpy()
    x = torch.tensor(gcoords, dtype=torch.float, requires_grad=True)
    dx_np = full_model.time_derivative(
        torch.tensor(gcoords, dtype=torch.float,
                     requires_grad=True)).cpu().detach().numpy()
    dx = torch.tensor(dx_np, dtype=torch.float)

    nnmodel = MLP(args.input_dim, args.hidden_dim, args.output_dim)
    model = HNN(2, nnmodel)
    model.to(device)
    optim = torch.optim.Adam(model.parameters(),
                             args.learn_rate,
                             weight_decay=args.weight_decay)

    # vanilla ae train loop
    stats = {'train_loss': [], 'test_loss': []}
    for step in range(args.total_steps + 1):

        # train step
        ixs = torch.randperm(x.shape[0])[:args.batch_size]
        x_train, dxdt = x[ixs].to(device), dx[ixs].to(device)
        dxdt_hat = model.time_derivative(x_train)

        loss = L2_loss(dxdt, dxdt_hat)
        loss.backward()
        optim.step()
        optim.zero_grad()

        stats['train_loss'].append(loss.item())

        if step % args.print_every == 0:
            print("step {}, train_loss {:.4e}".format(step, loss.item()))

    # train_dist = hnn_ae_loss(x, x_next, model, return_scalar=False)
    # print('Final train loss {:.4e} +/- {:.4e}'
    #       .format(train_dist.mean().item(), train_dist.std().item() / np.sqrt(train_dist.shape[0])))
    return model
Esempio n. 5
0
def train(args):
  # set random seed
  torch.manual_seed(args.seed)
  np.random.seed(args.seed)
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  print(device)
  # init model and optimizer
  if args.verbose:
    print("Training baseline model:" if args.baseline else "Training HNN model:")

  output_dim = args.input_dim if args.baseline else 2
  nn_model = MLPAutoencoder(args.input_dim, args.hidden_dim, args.latent_dim, args.nonlinearity)
  nn_model.to(device)
  model = HNN(args.input_dim, differentiable_model=nn_model,
            field_type=args.field_type, baseline=args.baseline, device=device)
  model.to(device)
  optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=0)
  
  # arrange data
  X = np.load('statrectinputs.npy')
  Y = np.load('statrectoutputs.npy')
  Y[~np.isfinite(Y)] = 0
  xm, xd = give_min_and_dist(X)
  ym, yd= give_min_and_dist(Y)
  X = scale(X, xm, xd)
  Y = scale(Y, ym, yd)
  n_egs = X.shape[0]
  x = X[0:int(0.8*n_egs),:]
  test_x = torch.tensor(X[:-int(0.2*n_egs),:], requires_grad=True, dtype=torch.float32)
  dxdt = Y[0:int(0.8*n_egs),:]
  test_dxdt = torch.tensor(Y[:-int(0.2*n_egs),:])


  # vanilla train loop
  stats = {'train_loss': [], 'test_loss': []}
  for step in range(args.total_steps+1):

    # train step
    ixs = torch.randperm(x.shape[0])[:args.batch_size]
    x = torch.tensor(x[ixs], requires_grad=True, dtype=torch.float32)
    x.to(device)
    dxdt_hat = model.time_derivative(x)
    y = torch.tensor(dxdt[ixs])
    y.to(device)
    loss = L2_loss(y, dxdt_hat)
    loss.backward()
    grad = torch.cat([p.grad.flatten() for p in model.parameters()]).clone()
    optim.step() ; optim.zero_grad()

    # run test data
    test_ixs = torch.randperm(test_x.shape[0])[:args.batch_size]
    test_dxdt_hat = model.time_derivative(test_x[test_ixs])

    #test_dxdt_hat += args.input_noise * torch.randn(*test_x[test_ixs].shape) # add noise, maybe
    test_loss = L2_loss(test_dxdt[test_ixs], test_dxdt_hat)

    # logging
    stats['train_loss'].append(loss.item())
    stats['test_loss'].append(test_loss.item())
    if args.verbose and step % args.print_every == 0:
      print("step {}, train_loss {:.4e}, test_loss {:.4e}, grad norm {:.4e}, grad std {:.4e}"
          .format(step, loss.item(), test_loss.item(), grad@grad, grad.std()))
  ixs = torch.randperm(x.shape[0])[:10000]
  x = torch.tensor(x[ixs], requires_grad=True, dtype=torch.float32)
  x.to(device)
  enc = model.encoding(x).detach().numpy()
  print(x.shape)
  fig = plt.figure()
  ax = fig.add_subplot(111, projection='3d')
  x = x.detach().numpy()
  img = ax.scatter(enc[:,0], enc[:,3], enc[:,2], c=enc[:,1], cmap=plt.hot())
  fig.colorbar(img)
  plt.savefig('lrep.png')
  y0 = torch.tensor([0.4, 0.3, 1/np.sqrt(2), 1/np.sqrt(2)], dtype=torch.float32)
  update_fn = lambda t, y0: model_update(t, y0, model)
  orbit, settings = get_orbit(y0, t_points=10, t_span=[0, 10], update_fn=update_fn)
  print(orbit)
  plt.scatter(orbit[:,0], orbit[:, 1])
  plt.savefig('orbit.png')

  return model,  stats
Esempio n. 6
0
def train(args):
    if torch.cuda.is_available() and not args.cpu:
        device = torch.device("cuda:0")
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.empty_cache()
        print("Running on the GPU")
    else:
        device = torch.device("cpu")
        print("Running on the CPU")

    # set random seed
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

    # get dataset (no test data for now)
    angular_velo, acc_1, acc_2, sound = get_dataset_split(
        args.folder,
        args.speed,
        scaled=args.scaled,
        experiment_dir=args.experiment_dir,
        tensor=True)
    sub_col = {
        0: [angular_velo, 1, 'v'],
        1: [acc_1, 3, 'a1'],
        2: [acc_2, 3, 'a2'],
        3: [sound, 1, 's']
    }
    col2use = sub_col[args.sub_columns][0]

    # using universal autoencoder, pre-encode the training points
    autoencoder = MLPAutoencoder(sub_col[args.sub_columns][1],
                                 args.hidden_dim,
                                 args.latent_dim * 2,
                                 dropout_rate=args.dropout_rate_ae)
    full_model = PixelHNN(args.latent_dim * 2,
                          args.hidden_dim,
                          autoencoder=autoencoder,
                          nonlinearity=args.nonlinearity,
                          baseline=args.baseline,
                          dropout_rate=args.dropout_rate)
    path = "{}/saved_models/{}-{}.tar".format(args.save_dir, args.ae_path,
                                              sub_col[args.sub_columns][2])
    full_model.load_state_dict(torch.load(path))
    full_model.eval()
    autoencoder_model = full_model.autoencoder

    gcoords = autoencoder_model.encode(col2use).cpu().detach().numpy()
    x = torch.tensor(gcoords, dtype=torch.float, requires_grad=True)
    dx_np = full_model.time_derivative(
        torch.tensor(gcoords, dtype=torch.float,
                     requires_grad=True)).cpu().detach().numpy()
    dx = torch.tensor(dx_np, dtype=torch.float)

    nnmodel = MLP(args.input_dim, args.hidden_dim, args.output_dim)
    model = HNN(2, nnmodel)
    model.to(device)
    optim = torch.optim.Adam(model.parameters(),
                             args.learn_rate,
                             weight_decay=args.weight_decay)

    print("Data from {} {}, column: {}".format(args.folder, args.speed,
                                               sub_col[args.sub_columns][2]))

    # x = torch.tensor(col2use[:-1], dtype=torch.float)
    # x_next = torch.tensor(col2use[1:], dtype=torch.float)
    #
    # autoencoder = MLPAutoencoder(sub_col[args.sub_columns][1], args.hidden_dim, args.latent_dim * 2, dropout_rate=args.dropout_rate_ae)
    # model = PixelHNN(args.latent_dim * 2, args.hidden_dim,
    #                  autoencoder=autoencoder, nonlinearity=args.nonlinearity, baseline=args.baseline, dropout_rate=args.dropout_rate)
    # model.to(device)
    # optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=args.weight_decay)

    # vanilla ae train loop
    stats = {'train_loss': []}
    for step in range(args.total_steps + 1):
        # train step
        ixs = torch.randperm(x.shape[0])[:args.batch_size]
        x_train, dxdt = x[ixs].to(device), dx[ixs].to(device)
        dxdt_hat = model.time_derivative(x_train)

        loss = L2_loss(dxdt, dxdt_hat)
        loss.backward()
        optim.step()
        optim.zero_grad()

        stats['train_loss'].append(loss.item())
        if step % args.print_every == 0:
            print("step {}, train_loss {:.4e}".format(step, loss.item()))

    # train_dist = hnn_ae_loss(x, x_next, model, return_scalar=False)
    # print('Final train loss {:.4e} +/- {:.4e}'
    #       .format(train_dist.mean().item(), train_dist.std().item() / np.sqrt(train_dist.shape[0])))
    return model