Esempio n. 1
0
    def kde(self, x, y, data=None):
        data = self.data if data is None else data
        plot_opts = dict(self._plot_opts)
        invert = self.kwds.get('orientation', False) == 'horizontal'
        opts = dict(plot=dict(plot_opts, invert_axes=invert),
                    style=self._style_opts,
                    norm=self._norm_opts)
        opts = {
            'Distribution': opts,
            'Area': opts,
            'NdOverlay': {
                'plot': dict(plot_opts, legend_limit=0)
            }
        }

        if y and self.by:
            ds = Dataset(data)
            return ds.to(Distribution, y, [], self.by).overlay().opts(opts)
        elif y:
            return Distribution(data, y, []).opts(opts)

        if self.columns:
            data = data[self.columns]
        df = pd.melt(data,
                     var_name=self.group_label,
                     value_name=self.value_label)
        ds = Dataset(df)
        if len(df):
            overlay = ds.to(Distribution, self.value_label).overlay()
        else:
            vdim = self.value_label + ' Density'
            overlay = NdOverlay({0: Area([], self.value_label, vdim)},
                                [self.group_label])
        return overlay.relabel(**self._relabel).opts(opts)
Esempio n. 2
0
    def hist(self, x, y, data=None):
        plot_opts = dict(self._plot_opts)
        invert = self.kwds.get('orientation', False) == 'horizontal'
        opts = dict(plot=dict(plot_opts, labelled=['x'], invert_axes=invert),
                    style=self._style_opts,
                    norm=self._norm_opts)
        hist_opts = {
            'num_bins': self.kwds.get('bins', 10),
            'bin_range': self.kwds.get('bin_range', None),
            'normed': self.kwds.get('normed', False)
        }

        data = self.data if data is None else data
        ds = Dataset(data)
        if y and self.by:
            return histogram(ds.to(Dataset, [], y, self.by), **hist_opts).\
                overlay().opts({'Histogram': opts})
        elif y:
            return histogram(ds, dimension=y, **hist_opts).\
                opts({'Histogram': opts})

        hists = {}
        columns = self.columns or data.columns
        for col in columns:
            hist = histogram(ds, dimension=col, **hist_opts)
            ranges = {hist.vdims[0].name: self._dim_ranges['y']}
            hists[col] = (hist.redim.range(**ranges).relabel(
                **self._relabel).opts(**opts))
        return NdOverlay(hists)
Esempio n. 3
0
    def kde(self, x, y, data=None):
        data, x, y = self._process_args(data, x, y)
        opts = dict(plot=self._plot_opts,
                    style=self._style_opts,
                    norm=self._norm_opts)
        opts = {
            'Distribution': opts,
            'Area': opts,
            'NdOverlay': {
                'plot': dict(self._plot_opts, legend_limit=0)
            }
        }

        if not isinstance(y, (list, tuple)):
            ranges = {y: self._dim_ranges['x']}
            if self.by:
                dists = Dataset(data).to(Distribution, y, [], self.by)
                dists = dists.layout() if self.subplots else dists.overlay()
            else:
                dists = Distribution(data, y, [])
        else:
            ranges = {self.value_label: self._dim_ranges['x']}
            data = data[y]
            df = pd.melt(data,
                         var_name=self.group_label,
                         value_name=self.value_label)
            ds = Dataset(df)
            if len(df):
                dists = ds.to(Distribution, self.value_label).overlay()
            else:
                vdim = self.value_label + ' Density'
                dists = NdOverlay({0: Area([], self.value_label, vdim)},
                                  [self.group_label])
        return dists.redim(**self._redim).redim.range(**ranges).relabel(
            **self._relabel).opts(opts)
Esempio n. 4
0
 def test_quadmesh_update_cbar(self):
     xs = ys = np.linspace(0, 6, 10)
     zs = np.linspace(1, 2, 5)
     XS, YS, ZS = np.meshgrid(xs, ys, zs)
     values = np.sin(XS) * ZS
     ds = Dataset((xs, ys, zs, values.T), ['x', 'y', 'z'], 'values')
     hmap = ds.to(QuadMesh).options(colorbar=True, framewise=True)
     plot = mpl_renderer.get_plot(hmap)
     self.assertEqual(plot.handles['cbar'].get_clim(), (-0.9989549170979283, 0.9719379013633127))
     plot.update(3)
     self.assertEqual(plot.handles['cbar'].get_clim(), (-1.7481711049213744, 1.7008913273857973))
Esempio n. 5
0
 def test_quadmesh_update_cbar(self):
     xs = ys = np.linspace(0, 6, 10)
     zs = np.linspace(1, 2, 5)
     XS, YS, ZS = np.meshgrid(xs, ys, zs)
     values = np.sin(XS) * ZS
     ds = Dataset((xs, ys, zs, values.T), ['x', 'y', 'z'], 'values')
     hmap = ds.to(QuadMesh).options(colorbar=True, framewise=True)
     plot = mpl_renderer.get_plot(hmap)
     self.assertEqual(plot.handles['cbar'].get_clim(),
                      (-0.9989549170979283, 0.9719379013633127))
     plot.update(3)
     self.assertEqual(plot.handles['cbar'].get_clim(),
                      (-1.7481711049213744, 1.7008913273857973))
Esempio n. 6
0
    def hist(self, x, y, data=None):
        data, x, y = self._process_args(data, x, y)

        labelled = ['y'] if self.invert else ['x']
        plot_opts = dict(self._plot_opts, labelled=labelled)
        opts = dict(plot=plot_opts,
                    style=self._style_opts,
                    norm=self._norm_opts)
        hist_opts = {
            'bin_range': self.kwds.get('bin_range', None),
            'normed': self.kwds.get('normed', False),
            'cumulative': self.kwds.get('cumulative', False)
        }
        if 'bins' in self.kwds:
            bins = self.kwds['bins']
            if isinstance(bins, int):
                hist_opts['num_bins'] = bins
            else:
                hist_opts['bins'] = bins

        if not isinstance(y, (list, tuple)):
            if self.stacked and not self.subplots and not 'bin_range' in self.kwds:
                ys = data[y]
                hist_opts['bin_range'] = (ys.min(), ys.max())

            ds = Dataset(data, self.by, y)
            hist = hists = histogram(ds.to(Dataset, [], y, self.by),
                                     **hist_opts)
            if self.by:
                hist = hists.last
                hists = hists.layout() if self.subplots else hists.overlay()
            ranges = {
                hist.kdims[0].name: self._dim_ranges['x'],
                hist.vdims[0].name: self._dim_ranges['y']
            }
            return hists.opts({
                'Histogram': opts
            }).redim(**self._redim).redim.range(**ranges)

        ds = Dataset(data)
        hists = []
        for col in y:
            hist = histogram(ds, dimension=col, **hist_opts)
            ranges = {
                hist.kdims[0].name: self._dim_ranges['x'],
                hist.vdims[0].name: self._dim_ranges['y']
            }
            hists.append((col, hist.redim.range(**ranges).relabel(
                **self._relabel).opts(**opts)))
        return self._by_type(hists, sort=False).redim(**self._redim)