def load_mutation_heat(args): samples = hnio.load_samples(args.sample_file) if args.sample_file else None genes = hnio.load_genes(args.gene_file) if args.gene_file else None snvs = hnio.load_snvs(args.snv_file, genes, samples) cnas = hnio.load_cnas(args.cna_file, genes, samples) if args.cna_file else [] if args.cna_filter_threshold: cnas = hnheat.filter_cnas(cnas, args.cna_filter_threshold) if not samples: samples = set([snv.sample for snv in snvs] + [cna.sample for cna in cnas]) return hnheat.mut_heat(len(samples), snvs, cnas, args.min_freq), None
def load_mutation_heat(args): genes = hnio.load_genes(args.gene_file) if args.gene_file else None samples = hnio.load_samples(args.sample_file) if args.sample_file else None snvs = hnio.load_snvs(args.snv_file, genes, samples) cnas = hnio.load_cnas(args.cna_file, genes, samples) if args.cna_file else [] if args.cna_filter_threshold: cnas = hnheat.filter_cnas(cnas, args.cna_filter_threshold) if not samples: samples = set([snv.sample for snv in snvs] + [cna.sample for cna in cnas]) if not genes: genes = set([snv.gene for snv in snvs] + [cna.gene for cna in cnas]) return hnheat.mut_heat(genes, len(samples), snvs, cnas, args.min_freq)
def run(args): subnetworks_file = '%s/viz_files/%s' % (str(hotnet2.__file__).rsplit('/', 1)[0], VIZ_SUBNETWORKS) # create output directory if doesn't exist; warn if it exists and is not empty outdir = args.output_directory if not os.path.exists(outdir): os.makedirs(outdir) if len(os.listdir(outdir)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") ks = set() output = dict(deltas=[], subnetworks=dict(), mutation_matrices=dict(), stats=dict()) subnetworks = dict() for results_file in args.results_files: results = json.load(open(results_file)) ccs = results['components'] heat_file = json.load(open(results['parameters']['heat_file'])) gene2heat = heat_file['heat'] heat_parameters = heat_file['parameters'] d_score = hnio.load_display_score_tsv(args.display_score_file) if args.display_score_file else None d_name = hnio.load_display_name_tsv(args.display_name_file) if args.display_name_file else dict() edges = hnio.load_ppi_edges(args.edge_file, hnio.load_index(results['parameters']['infmat_index_file'])) delta = format(results['parameters']['delta'], 'g') output['deltas'].append(delta) subnetworks[delta] = ccs output["subnetworks"][delta] = [] for cc in ccs: output['subnetworks'][delta].append(viz.get_component_json(cc, gene2heat, edges, args.network_name, d_score, d_name)) # make oncoprints if heat file was generated from mutation data if 'heat_fn' in heat_parameters and heat_parameters['heat_fn'] == 'load_mutation_heat': output['mutation_matrices'][delta] = list() samples = hnio.load_samples(heat_parameters['sample_file']) if heat_parameters['sample_file'] else None genes = hnio.load_genes(heat_parameters['gene_file']) if heat_parameters['gene_file'] else None snvs = hnio.load_snvs(heat_parameters['snv_file'], genes, samples) if heat_parameters['snv_file'] else [] cnas = hnio.load_cnas(heat_parameters['cna_file'], genes, samples) if heat_parameters['cna_file'] else [] for cc in ccs: output['mutation_matrices'][delta].append(viz.get_oncoprint_json(cc, snvs, cnas, d_name)) if heat_parameters.get('sample_type_file'): with open(heat_parameters['sample_type_file']) as f: output['sampleToTypes'] = dict(l.rstrip().split() for l in f if not l.startswith("#") ) output['typeToSamples'] = dict((t, []) for t in set(output['sampleToTypes'].values())) for s, ty in output['sampleToTypes'].iteritems(): output['typeToSamples'][ty].append( s ) else: output['sampleToTypes'] = dict( (s, "Cancer") for s in samples ) output['typeToSamples'] = dict(Cancer=list(samples)) output['stats'][delta] = results['statistics'] for k in sorted(map(int, results['statistics'].keys())): ks.add(k) continue stats = results['statistics'][str(k)] output['stats'][delta].append( dict(k=k, expected=stats['expected'], observed=stats['observed'], pval=stats['pval'])) output['ks'] = range(min(ks), max(ks)+1) with open('%s/subnetworks.json' % outdir, 'w') as out: json.dump(output, out, indent=4) shutil.copy(subnetworks_file, '%s/%s' % (outdir, VIZ_INDEX))
def run(args): subnetworks_file = '%s/viz_files/%s' % (str(hotnet2.__file__).rsplit('/', 1)[0], VIZ_SUBNETWORKS) # create output directory if doesn't exist; warn if it exists and is not empty outdir = args.output_directory if not os.path.exists(outdir): os.makedirs(outdir) if len(os.listdir(outdir)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") ks = set() output = dict(deltas=[], subnetworks=dict(), mutation_matrices=dict(), stats=dict()) predictions = set() multipleHeatFiles = False for results_file in args.results_files: with open(results_file, 'r') as IN: results = json.load(IN) ccs = results['components'] heat_file = json.load(open(results['parameters']['heat_file'])) gene2heat = heat_file['heat'] heat_parameters = heat_file['parameters'] d_score = hnio.load_display_score_tsv(args.display_score_file) if args.display_score_file else None d_name = hnio.load_display_name_tsv(args.display_name_file) if args.display_name_file else dict() edges = hnio.load_ppi_edges(args.edge_file, hnio.load_index(results['parameters']['infmat_index_file'])) delta = format(results['parameters']['delta'], 'g') output['deltas'].append(delta) output["subnetworks"][delta] = [] predictions |= set( g for cc in ccs for g in cc ) for cc in ccs: output['subnetworks'][delta].append(viz.get_component_json(cc, gene2heat, edges, args.network_name, d_score, d_name)) # Record the heat scores if 'geneToHeat' in output: if any( output['geneToHeat'][g] != h for g, h in gene2heat.iteritems() ) or len(gene2heat.keys()) != len(output['geneToHeat'].keys()): multipleHeatFiles = True output['geneToHeat'] = gene2heat # make oncoprints if heat file was generated from mutation data if 'heat_fn' in heat_parameters and heat_parameters['heat_fn'] == 'load_mutation_heat': output['mutation_matrices'][delta] = list() samples = hnio.load_samples(heat_parameters['sample_file']) if heat_parameters['sample_file'] else None genes = hnio.load_genes(heat_parameters['gene_file']) if heat_parameters['gene_file'] else None snvs = hnio.load_snvs(heat_parameters['snv_file'], genes, samples) if heat_parameters['snv_file'] else [] cnas = hnio.load_cnas(heat_parameters['cna_file'], genes, samples) if heat_parameters['cna_file'] else [] # Get the samples and genes from the mutations directly if they weren't provided if not samples: samples = set( m.sample for m in snvs ) | set( m.sample for m in cnas ) if not genes: genes = set( m.gene for m in snvs) | set( m.gene for m in cnas ) for cc in ccs: output['mutation_matrices'][delta].append(viz.get_oncoprint_json(cc, snvs, cnas, d_name)) if heat_parameters.get('sample_type_file'): with open(heat_parameters['sample_type_file']) as f: output['sampleToTypes'] = dict(l.rstrip().split() for l in f if not l.startswith("#") ) output['typeToSamples'] = dict((t, []) for t in set(output['sampleToTypes'].values())) for s, ty in output['sampleToTypes'].iteritems(): output['typeToSamples'][ty].append( s ) else: if not samples: samples = set( m.sample for m in snvs ) | set( m.sample for m in cnas ) output['sampleToTypes'] = dict( (s, "Cancer") for s in samples ) output['typeToSamples'] = dict(Cancer=list(samples)) output['stats'][delta] = results['statistics'] ks |= set(map(int, results['statistics'].keys())) # Print a warning if there were multiple heat files referenced by # the results files if multipleHeatFiles: sys.stderr.write('Warning: results files used multiple heat files. Only the last heat file will be used to tabulate scores.\n') # Output to file output['predictions'] = sorted(predictions) # list of nodes found in any run output['ks'] = range(min(ks), max(ks)+1) with open('%s/subnetworks.json' % outdir, 'w') as out: json.dump(output, out, indent=4) shutil.copy(subnetworks_file, '%s/%s' % (outdir, VIZ_INDEX))
def run(args): subnetworks_file = '%s/viz_files/%s' % (str(hotnet2.__file__).rsplit( '/', 1)[0], VIZ_SUBNETWORKS) # create output directory if doesn't exist; warn if it exists and is not empty outdir = args.output_directory if not os.path.exists(outdir): os.makedirs(outdir) if len(os.listdir(outdir)) > 0: print( "WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") ks = set() output = dict(deltas=[], subnetworks=dict(), mutation_matrices=dict(), stats=dict()) subnetworks = dict() for results_file in args.results_files: results = json.load(open(results_file)) ccs = results['components'] heat_file = json.load(open(results['parameters']['heat_file'])) gene2heat = heat_file['heat'] heat_parameters = heat_file['parameters'] d_score = hnio.load_display_score_tsv( args.display_score_file) if args.display_score_file else None d_name = hnio.load_display_name_tsv( args.display_name_file) if args.display_name_file else dict() edges = hnio.load_ppi_edges( args.edge_file, hnio.load_index(results['parameters']['infmat_index_file'])) delta = format(results['parameters']['delta'], 'g') output['deltas'].append(delta) subnetworks[delta] = ccs output["subnetworks"][delta] = [] for cc in ccs: output['subnetworks'][delta].append( viz.get_component_json(cc, gene2heat, edges, args.network_name, d_score, d_name)) # make oncoprints if heat file was generated from mutation data if 'heat_fn' in heat_parameters and heat_parameters[ 'heat_fn'] == 'load_mutation_heat': output['mutation_matrices'][delta] = list() samples = hnio.load_samples( heat_parameters['sample_file'] ) if heat_parameters['sample_file'] else None genes = hnio.load_genes(heat_parameters['gene_file'] ) if heat_parameters['gene_file'] else None snvs = hnio.load_snvs( heat_parameters['snv_file'], genes, samples) if heat_parameters['snv_file'] else [] cnas = hnio.load_cnas( heat_parameters['cna_file'], genes, samples) if heat_parameters['cna_file'] else [] # Get the samples and genes from the mutations directly if they weren't provided if not samples: samples = set(m.sample for m in snvs) | set(m.sample for m in cnas) if not genes: genes = set(m.gene for m in snvs) | set(m.gene for m in cnas) for cc in ccs: output['mutation_matrices'][delta].append( viz.get_oncoprint_json(cc, snvs, cnas, d_name)) if heat_parameters.get('sample_type_file'): with open(heat_parameters['sample_type_file']) as f: output['sampleToTypes'] = dict(l.rstrip().split() for l in f if not l.startswith("#")) output['typeToSamples'] = dict( (t, []) for t in set(output['sampleToTypes'].values())) for s, ty in output['sampleToTypes'].iteritems(): output['typeToSamples'][ty].append(s) else: output['sampleToTypes'] = dict((s, "Cancer") for s in samples) output['typeToSamples'] = dict(Cancer=list(samples)) output['stats'][delta] = results['statistics'] ks |= set(map(int, results['statistics'].keys())) output['ks'] = range(min(ks), max(ks) + 1) with open('%s/subnetworks.json' % outdir, 'w') as out: json.dump(output, out, indent=4) shutil.copy(subnetworks_file, '%s/%s' % (outdir, VIZ_INDEX))