def test_ParallelBasicPython_Works(self): X = np.random.rand(1000, 10) T = np.random.rand(1000, 3) hX = modules.make_hdf5(X, self.fnameX) hT = modules.make_hdf5(T, self.fnameT) model0 = HPELM(10, 3) model0.add_neurons(10, 'lin') model0.add_neurons(5, 'tanh') model0.add_neurons(15, 'sigm') model0.save(self.fmodel) model1 = HPELM(10, 3) model1.load(self.fmodel) os.remove(self.fnameHT) os.remove(self.fnameHH) model1.add_data(self.fnameX, self.fnameT, istart=0, icount=100, fHH=self.fnameHH, fHT=self.fnameHT) model2 = HPELM(10, 3) model2.load(self.fmodel) model2.add_data(self.fnameX, self.fnameT, istart=100, icount=900, fHH=self.fnameHH, fHT=self.fnameHT) model3 = HPELM(10, 3) model3.load(self.fmodel) model3.solve_corr(self.fnameHH, self.fnameHT) model3.save(self.fmodel) model4 = HPELM(10, 3) model4.load(self.fmodel) model4.predict(self.fnameX, self.fnameY) err = model4.error(self.fnameT, self.fnameY, istart=0, icount=198) self.assertLess(err, 1) err = model4.error(self.fnameT, self.fnameY, istart=379, icount=872) self.assertLess(err, 1)
def start(): pairs = MapperUtil.get_allpairs() # Get pairs starting from 0th line if not pairs: print("No pairs found.") sys.exit() p = pyaudio.PyAudio() # Create a PyAudio session # Create a stream stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, output=True) #H2V_cursor = NeuralNetUtil.get_neurons("H2V") elmH2V = None # Loop over the pairs coming from CROSSMODAL for pair in pairs: #time.sleep(0.5) # Wait 0.5 seconds to prevent aggressive loop print pair if pair['direction'] == "H2V": print "____________________________________________________________\n" print pair['timestamp1'] hearing_memory = HearingMemoryUtil.get_memory( pair['timestamp1']) hearing_memory = hearing_memory.next()['data'] #print hearing_memory.next()['data'] #chunky_array = numpy.fromstring(hearing_memory.next()['data'], 'int16') #print chunky_array stream.write(hearing_memory) numpy_audio = numpy.fromstring(hearing_memory, numpy.uint8) #print numpy_audio print "Audio: ", numpy_audio.shape #print numpy.transpose(numpy_audio.reshape((numpy_audio.shape[0],1))).shape vision_memory = VisionMemoryUtil.get_memory(pair['timestamp2']) vision_memory = vision_memory.next() frame_amodal = numpy.fromstring(vision_memory['amodal'], numpy.uint8) print "Frame Threshold: ", frame_amodal.shape cv2.imshow("Frame Threshhold", frame_amodal.reshape(360, 640)) cv2.moveWindow("Frame Threshhold", 50, 100) frame_color = numpy.fromstring(vision_memory['color'], numpy.uint8) print "Frame Delta Colored: ", frame_color.shape cv2.imshow("Frame Delta Colored", frame_color.reshape(360, 640, 3)) cv2.moveWindow("Frame Delta Colored", 1200, 100) key = cv2.waitKey(500) & 0xFF #time.sleep(2.0) modulo = numpy_audio.shape[0] % RATE numpy_audio = numpy_audio[:-modulo] for one_second in numpy.array_split( numpy_audio, int(numpy_audio.shape[0] / RATE)): X = numpy.transpose( one_second.reshape((one_second.shape[0], 1))) T = numpy.transpose( frame_amodal.reshape((frame_amodal.shape[0], 1))) X = X.astype(numpy.float32, copy=False) T = T.astype(numpy.float32, copy=False) X[0] = X[0] / X[0].max() T[0] = T[0] / T[0].max() print X.shape print T.shape if elmH2V is None: elmH2V = HPELM(X.shape[1], T.shape[1]) if os.path.exists( os.path.expanduser("~/CerebralCortexH2V.pkl")): #elmH2V.nnet.neurons = H2V_cursor.next()['neurons'] elmH2V.load( os.path.expanduser("~/CerebralCortexH2V.pkl")) else: elmH2V.add_neurons(100, "sigm") elmH2V.train(X, T, "LOO") print elmH2V.predict(X) cv2.imshow( ">>>PREDICTION<<<", numpy.transpose(elmH2V.predict(X)).reshape(360, 640)) cv2.moveWindow(">>>PREDICTION<<<", 50, 550) print elmH2V.nnet.neurons elmH2V.save(os.path.expanduser("~/CerebralCortexH2V.pkl"))
def start(): pairs = MapperUtil.get_allpairs() # Get pairs starting from 0th line if not pairs: print ("No pairs found.") sys.exit() p = pyaudio.PyAudio() # Create a PyAudio session # Create a stream stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, output=True) #H2V_cursor = NeuralNetUtil.get_neurons("H2V") elmH2V = None # Loop over the pairs coming from CROSSMODAL for pair in pairs: #time.sleep(0.5) # Wait 0.5 seconds to prevent aggressive loop print pair if pair['direction'] == "H2V": print "____________________________________________________________\n" print pair['timestamp1'] hearing_memory = HearingMemoryUtil.get_memory(pair['timestamp1']) hearing_memory = hearing_memory.next()['data'] #print hearing_memory.next()['data'] #chunky_array = numpy.fromstring(hearing_memory.next()['data'], 'int16') #print chunky_array stream.write(hearing_memory) numpy_audio = numpy.fromstring(hearing_memory, numpy.uint8) #print numpy_audio print "Audio: ",numpy_audio.shape #print numpy.transpose(numpy_audio.reshape((numpy_audio.shape[0],1))).shape vision_memory = VisionMemoryUtil.get_memory(pair['timestamp2']) vision_memory = vision_memory.next() frame_amodal = numpy.fromstring(vision_memory['amodal'], numpy.uint8) print "Frame Threshold: ",frame_amodal.shape cv2.imshow("Frame Threshhold", frame_amodal.reshape(360,640)) cv2.moveWindow("Frame Threshhold",50,100) frame_color = numpy.fromstring(vision_memory['color'], numpy.uint8) print "Frame Delta Colored: ",frame_color.shape cv2.imshow("Frame Delta Colored", frame_color.reshape(360,640,3)) cv2.moveWindow("Frame Delta Colored",1200,100) key = cv2.waitKey(500) & 0xFF #time.sleep(2.0) modulo = numpy_audio.shape[0] % RATE numpy_audio = numpy_audio[:-modulo] for one_second in numpy.array_split(numpy_audio, int(numpy_audio.shape[0] / RATE)): X = numpy.transpose(one_second.reshape((one_second.shape[0],1))) T = numpy.transpose(frame_amodal.reshape((frame_amodal.shape[0],1))) X = X.astype(numpy.float32, copy=False) T = T.astype(numpy.float32, copy=False) X[0] = X[0] / X[0].max() T[0] = T[0] / T[0].max() print X.shape print T.shape if elmH2V is None: elmH2V = HPELM(X.shape[1],T.shape[1]) if os.path.exists(os.path.expanduser("~/CerebralCortexH2V.pkl")): #elmH2V.nnet.neurons = H2V_cursor.next()['neurons'] elmH2V.load(os.path.expanduser("~/CerebralCortexH2V.pkl")) else: elmH2V.add_neurons(100, "sigm") elmH2V.train(X, T, "LOO") print elmH2V.predict(X) cv2.imshow(">>>PREDICTION<<<", numpy.transpose(elmH2V.predict(X)).reshape(360,640)) cv2.moveWindow(">>>PREDICTION<<<",50,550) print elmH2V.nnet.neurons elmH2V.save(os.path.expanduser("~/CerebralCortexH2V.pkl"))
def test_SaveEmptyModel_CanLoad(self): model = HPELM(10, 3) model.save(self.fname) model2 = HPELM(10, 3) model2.load(self.fname)