Esempio n. 1
0
def test_continuous_loss_fn():
    """
    Demonstrate using a custom loss function with the continuous_loss_fn
    option.
    """

    from sklearn.metrics import log_loss

    # Generate some random data
    X = np.hstack([
        np.vstack([
            np.random.normal(0, 1, size=(1000, 10)),
            np.random.normal(1, 1, size=(1000, 10)),
        ]),
        np.random.normal(0, 1, size=(2000, 10)),
    ])
    y = np.zeros(2000)
    y[:1000] = 1

    def loss_function(targ, pred):
        # hyperopt_estimator flattens the prediction when saving it.  This also
        # affects multilabel classification.
        pred = pred.reshape((-1, 2))
        return log_loss(targ, pred[:, 1])

    # Try to fit an SGD model using log_loss as the loss function
    cls = hyperopt_estimator(
        classifier=components.sgd('sgd', loss='log'),
        preprocessing=[],
        loss_fn=loss_function,
        continuous_loss_fn=True,
    )
    cls.fit(X, y, cv_shuffle=True)
Esempio n. 2
0
def test_sparse_input():
    """
    Ensure the estimator can handle sparse X matrices.
    """

    import scipy.sparse as ss

    # Generate some random sparse data
    nrows, ncols, nnz = 100, 50, 10
    ntrue = nrows // 2
    D, C, R = [], [], []
    for r in range(nrows):
        feats = np.random.choice(range(ncols), size=nnz, replace=False)
        D.extend([1] * nnz)
        C.extend(feats)
        R.extend([r] * nnz)
    X = ss.csr_matrix((D, (R, C)), shape=(nrows, ncols))
    y = np.zeros(nrows)
    y[:ntrue] = 1

    # Try to fit an SGD model
    cls = hyperopt_estimator(
        classifier=components.sgd('sgd', loss='log'),
        preprocessing=[],
    )
    cls.fit(X, y)
def test_continuous_loss_fn():
    """
    Demonstrate using a custom loss function with the continuous_loss_fn
    option.
    """

    from sklearn.metrics import log_loss

    # Generate some random data
    X = np.hstack([
        np.vstack([
            np.random.normal(0,1,size=(1000,10)),
            np.random.normal(1,1,size=(1000,10)),
        ]),
        np.random.normal(0,1,size=(2000,10)),
    ])
    y = np.zeros(2000)
    y[:1000] = 1

    def loss_function(targ, pred):
        # hyperopt_estimator flattens the prediction when saving it.  This also
        # affects multilabel classification.
        pred = pred.reshape( (-1, 2) )
        return log_loss(targ, pred[:,1])

    # Try to fit an SGD model using log_loss as the loss function
    cls = hyperopt_estimator(
        classifier=components.sgd('sgd', loss='log'),
        preprocessing=[],
        loss_fn = loss_function,
        continuous_loss_fn=True,
    )
    cls.fit(X,y,cv_shuffle=True)
def test_sparse_input():
    """
    Ensure the estimator can handle sparse X matrices.
    """

    import scipy.sparse as ss

    # Generate some random sparse data
    nrows,ncols,nnz = 100,50,10
    ntrue = nrows // 2
    D,C,R = [],[],[]
    for r in range(nrows):
        feats = np.random.choice(range(ncols), size=nnz, replace=False)
        D.extend([1]*nnz)
        C.extend(feats)
        R.extend([r]*nnz)
    X = ss.csr_matrix( (D,(R,C)), shape=(nrows, ncols))
    y = np.zeros( nrows )
    y[:ntrue] = 1


    # Try to fit an SGD model
    cls = hyperopt_estimator(
        classifier=components.sgd('sgd', loss='log'),
        preprocessing=[],
    )
    cls.fit(X,y)
Esempio n. 5
0
    def select_classifier(cls, clf_type, name='clf', printout=False):

        cls.check_translate(clf_type, translate_type=name)  # check parameter
        classifiers_dict = dict(
            svc=svc(name + '.svc'),
            knn=knn(name + '.knn'),
            random_forest=random_forest(name + '.random_forest'),
            extra_trees=extra_trees(name + '.extra_trees'),
            ada_boost=ada_boost(name + '.ada_boost'),
            gradient_boosting=gradient_boosting(name + '.grad_boosting', loss='deviance'),
            sgd=sgd(name + '.sgd')
        )

        if xgboost:
            classifiers_dict['xgboost'] = xgboost_classification(name + '.xgboost')

        # if clf_type in classifiers_dict.keys():
        if printout:
            print([classifiers_dict[clf_type]])
        return hp.choice('%s' % name, [classifiers_dict[clf_type]])
Esempio n. 6
0
def test_crossvalidation():
    """
    Demonstrate performing a k-fold CV using the fit() method.
    """
    # Generate some random data
    X = np.hstack([
        np.vstack([
            np.random.normal(0, 1, size=(1000, 10)),
            np.random.normal(1, 1, size=(1000, 10)),
        ]),
        np.random.normal(0, 1, size=(2000, 10)),
    ])
    y = np.zeros(2000)
    y[:1000] = 1

    # Try to fit a model
    cls = hyperopt_estimator(
        classifier=components.sgd('sgd', loss='log'),
        preprocessing=[],
    )
    cls.fit(X, y, cv_shuffle=True, n_folds=5)
def test_crossvalidation():
    """
    Demonstrate performing a k-fold CV using the fit() method.
    """
    # Generate some random data
    X = np.hstack([
        np.vstack([
            np.random.normal(0,1,size=(1000,10)),
            np.random.normal(1,1,size=(1000,10)),
        ]),
        np.random.normal(0,1,size=(2000,10)),
    ])
    y = np.zeros(2000)
    y[:1000] = 1

    # Try to fit a model
    cls = hyperopt_estimator(
        classifier=components.sgd('sgd', loss='log'),
        preprocessing=[],
    )
    cls.fit(X,y,cv_shuffle=True, n_folds=5)
Esempio n. 8
0
def main():
    # Thanks to https://stackoverflow.com/questions/32612180/eliminating-warnings-from-scikit-learn
    def warn(*args, **kwargs):
        pass

    warnings.warn = warn
    parser.add_argument('--manual_seed', type=int, help='manual seed')
    directory = "C:\\Users\\alan\\Desktop\\experiments\\"
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    options = parser.parse_args()
    # files = get_data(directory)
    # models = []
    # for f in files:
    #     if f.endswith(".pth"):
    #         models.append(f)
    ngpu = options.num_gpu
    channels = options.channels
    num_disc_filters = options.num_disc_filters

    if options.gan_type == "dcgan":
        if options.gradient_penalty and options.wgan:
            netD = GoodDiscriminator(32).to(device)
            print(netD)
        elif options.wgan:
            netD = WganDiscriminator(3, 64).to(device)
            print(netD)
        else:
            netD = DiscriminatorOrig(1, 3, 64).to(device)

    netD.eval()

    if options.gradient_penalty:
        netD.apply(weight_init)
    else:
        netD.apply(weights_init)
    if options.disc_path != '':
        netD.load_state_dict(torch.load(options.disc_path))

    if options.gradient_penalty:
        layers = nn.Sequential(*list(netD.children()))
    else:
        layers = nn.Sequential(*list(netD.children()))[0]
    conv_layers = []
    # print(type(layers))
    # print(layers)
    # sys.exit(0)

    if options.gradient_penalty:
        for layer in layers:
            if type(layer) == MyConvo2d:
                conv_layers.append(*layer.children())
            if type(layer) == ResidualBlock:
                for item in list(layer.children()):
                    if type(item) == MyConvo2d:
                        conv_layers.append(*item.children())
    else:
        for layer in layers:
            if type(layer) == torch.nn.modules.conv.Conv2d:
                conv_layers.append(layer)
        # conv_layers.append(layers[0])
        # for layer in range(1,len(layers)+1):
        #     if type(layers[layer])==ResidualBlock:

        #         if type(item) == torch.nn.modules.conv.Conv2d:
        #             conv_layers.append(item)
    # print(netD)

    def get_conv_activations_wgangp(name, count):
        pool = nn.AdaptiveMaxPool2d(4)

        def hook(module, input, output):
            activations[str(name) + str(count)] = pool(output).view(
                output.size(0), -1)

        return hook

    def get_conv_activations(name):
        pool = nn.AdaptiveMaxPool2d(4)

        def hook(module, input, output):
            activations[name] = pool(output).view(output.size(0), -1)

        return hook

    # self.conv1 = MyConvo2d(3, self.dim, 3, he_init = False)
    # self.rb1 = ResidualBlock(self.dim, 2*self.dim, 3, resample = 'down', hw=DIM)
    # self.rb2 = ResidualBlock(2*self.dim, 4*self.dim, 3, resample = 'down', hw=int(DIM/2))
    # self.rb3 = ResidualBlock(4*self.dim, 8*self.dim, 3, resample = 'down', hw=int(DIM/4))
    # self.rb4 = ResidualBlock(8*self.dim, 8*self.dim, 3, resample = 'down', hw=int(DIM/8))
    # self.ln1 = nn.Linear(4*4*8*self.dim, 1)

    # Register forward hooks to get activations
    if options.gradient_penalty:
        netD.conv1.register_forward_hook(get_conv_activations_wgangp(
            'conv', 1))
        netD.rb1.register_forward_hook(get_conv_activations_wgangp('conv', 2))
        netD.rb2.register_forward_hook(get_conv_activations_wgangp('conv', 3))
        netD.rb3.register_forward_hook(get_conv_activations_wgangp('conv', 4))
        netD.rb4.register_forward_hook(get_conv_activations_wgangp('conv', 5))

    else:
        netD.main[0].register_forward_hook(get_conv_activations('conv1'))
        netD.main[2].register_forward_hook(get_conv_activations('conv2'))
        netD.main[5].register_forward_hook(get_conv_activations('conv3'))
        netD.main[8].register_forward_hook(get_conv_activations('conv4'))
        netD.main[11].register_forward_hook(get_conv_activations('conv5'))

    if options.dataset == 'cifar10':
        training_data = dset.CIFAR10(root=options.dataroot,
                                     download=False,
                                     train=True,
                                     transform=transforms.Compose([
                                         transforms.Resize(options.image_size),
                                         transforms.ToTensor(),
                                         transforms.Normalize((0.5, 0.5, 0.5),
                                                              (0.5, 0.5, 0.5)),
                                     ]))
        test_data = dset.CIFAR10(root=options.dataroot,
                                 download=False,
                                 train=False,
                                 transform=transforms.Compose([
                                     transforms.Resize(options.image_size),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5),
                                                          (0.5, 0.5, 0.5)),
                                 ]))
        train_dataloader = torch.utils.data.DataLoader(training_data,
                                                       batch_size=1,
                                                       shuffle=True,
                                                       num_workers=int(
                                                           options.workers))

        test_dataloader = torch.utils.data.DataLoader(test_data,
                                                      batch_size=1,
                                                      shuffle=True,
                                                      num_workers=int(
                                                          options.workers))

    else:
        # thanks to @Jordi_de_la_Torre https://discuss.pytorch.org/t/balanced-sampling-between-classes-with-torchvision-dataloader/2703/2
        svhn_train = dset.SVHN(root="D:\svhn",
                               split="train",
                               download=False,
                               transform=transforms.Compose([
                                   transforms.Resize(options.image_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5),
                                                        (0.5, 0.5, 0.5)),
                               ]))
        svhn_test = dset.SVHN(root="D:\svhn",
                              split="test",
                              download=False,
                              transform=transforms.Compose([
                                  transforms.Resize(options.image_size),
                                  transforms.ToTensor(),
                                  transforms.Normalize((0.5, 0.5, 0.5),
                                                       (0.5, 0.5, 0.5)),
                              ]))

        train_dataloader = torch.utils.data.DataLoader(svhn_train,
                                                       shuffle=True,
                                                       batch_size=1,
                                                       num_workers=int(
                                                           options.workers),
                                                       pin_memory=True)

        test_dataloader = torch.utils.data.DataLoader(
            svhn_test,
            sampler=ImbalancedDatasetSampler(svhn_test),
            batch_size=1,
            num_workers=int(options.workers),
            pin_memory=True)
    training_iter = iter(train_dataloader)
    test_iter = iter(test_dataloader)
    # print(len(train_dataloader),len(test_dataloader))
    i = 0
    x_train = []
    # Heavily inspired by https://github.com/pytorch/examples/blob/master/dcgan/main.py
    # x=[]
    y_train = []
    while i < 50000:
        data = training_iter.next()
        data[0] = data[0].to(device)
        if options.gradient_penalty:
            data[0] = F.interpolate(data[0], 64)
        activations = {}
        output = netD(data[0])

        get_conv_activations('conv1')
        get_conv_activations('conv2')
        get_conv_activations('conv3')
        get_conv_activations('conv4')
        get_conv_activations('conv5')
        act_flat = []
        y_train.append(data[1])

        for key in activations:
            act_flat.append(activations[key])
        act_flat = torch.cat(act_flat, 1)[0]
        x_train.append(act_flat.detach().cpu().numpy())
        i += 1

    x_train = np.asarray(x_train)
    y_train = np.asarray(y_train)
    j = 0
    x_test = []
    y_test = []

    if options.dataset == 'svhn':
        test_length = len(test_dataloader)
    else:
        test_length = 10000
    while j < test_length:
        data = test_iter.next()
        data[0] = data[0].to(device)
        if options.gradient_penalty:
            data[0] = F.interpolate(data[0], 64)
        activations = {}
        output = netD(data[0])
        get_conv_activations('conv1')
        get_conv_activations('conv2')
        get_conv_activations('conv3')
        get_conv_activations('conv4')
        get_conv_activations('conv5')
        act_flat = []
        y_test.append(data[1])
        for key in activations:
            act_flat.append(activations[key])
        act_flat = torch.cat(act_flat, 1)[0]
        x_test.append(act_flat.detach().cpu().numpy())
        j += 1

    x_test = np.asarray(x_test)
    y_test = np.asarray(y_test)
    title = str(options.gan_type + "_wgan-" + str(options.wgan) + "_" +
                options.dataset + "_" + options.optimise + "_gradpen-" +
                str(options.gradient_penalty) + ".txt")
    output_file = open(title, "w")
    if options.optimise != 'no_optimisation':
        model = HyperoptEstimator(classifier=hpc.sgd('_sgd',
                                                     penalty='l2',
                                                     n_jobs=-1),
                                  max_evals=25,
                                  trial_timeout=1200)
    else:
        model = linear_model.SGDClassifier(penalty='l2', n_jobs=-1)
    # model = HyperoptEstimator(classifier=any_classifier('my_clf'),
    #                       algo=tpe.suggest,
    #                       max_evals=10,
    #                       trial_timeout=30)
    #model = TPOTClassifier(generations=5, population_size=20, verbosity=2)
    # model = ac.AutoSklearnClassifier()
    #model = linear_model.
    #model = linear_model.SGDClassifier(n_jobs=-1)
    # grid = {
    #     'alpha': [1e-4,1e-3,1e-2,1e-1,1e0,1e1,1e2,1e3],
    #     'max_iter': [1000],
    #     'loss': ['hinge'],
    #     'penalty': ['l2'],
    #     'n_jobs': [-1]
    # }
    # param_grid = ParameterGrid(grid)
    # best_model, best_score, all_models, all_scores = pf.bestFit(linear_model.SGDClassifier,param_grid,x_train,y_train,
    # x_test,y_test,metric=accuracy_score,scoreLabel='Acc')
    # print(best_model,best_score)
    model.fit(x_train, y_train)
    # #print(model,"is the model")
    # predictions = model.predict(x_test)
    # print(predictions,"are the predictions")
    score = model.score(x_test, y_test)
    output_file.write("Score:\n" + str(score))
    if options.optimise != 'no_optimisation':
        best = str(model.best_model())
        output_file.write("\nBest model:\n" + str(best))
    else:
        params = str(model.get_params())
        output_file.write("\nModel parameters:\n" + str(params))
    # score = model.score(x_test,y_test)

    #output_file.write("\n"+str(best))
    # output_file.write(str(np.asarray(predictions))+"\n")
    # output_file.write(str(np.asarray(y_test))+"\n")
    output_file.close()