def test_model_with_no_argument():
    with pytest.raises(TypeError) as e_info:
        model = hs.LeastSquares()
        assert 'Either (A and Alpha) or `conditions` should be assigned.' in str(
            e_info)
        A = np.random.rand(2, 1)
        condition = hs.Conditions()
        model = hs.LeastSquares(A=A, conditions=[condition])
        assert 'Either (A and Alpha) or `conditions` should be assigned.' in str(
            e_info)
def test_A_dim():
    '''
    Test the dimension of A to be 2x1
    '''
    real = np.random.uniform(0, 10, [1, 2])
    imag = np.random.uniform(0, 10, [1, 2])
    A = real + imag * 1j
    with pytest.raises(hs.CustomError) as e_info:
        hs.LeastSquares(test_A_dim, test_alpha)
    real = np.random.uniform(0, 10, [2, 2])
    imag = np.random.uniform(0, 10, [2, 2])
    A = real + imag * 1j
    with pytest.raises(hs.CustomError) as e_info:
        hs.LeastSquares(test_A_dim, test_alpha)
def test_WLS(param, expected):
    '''
    Testing instantiate LMI model and test it against test cases
    '''
    my_ALPHA = hs.Alpha()
    A = hs.convert_matrix_to_cart(param[0]['A'])
    A0 = [0]
    # It is acceptable to enter either direct_matrix or A,B,U matrices
    try:
        direct_matrix = hs.convert_matrix_to_cart(param[0]['ALPHA'])
        my_ALPHA.add(direct_matrix=direct_matrix)
    except KeyError:
        B = hs.convert_matrix_to_cart(param[0]['B'])
        U = hs.convert_matrix_to_cart(param[0]['U'])
        my_ALPHA.add(A=A, B=B, U=U)
    try:
        A0 = hs.convert_matrix_to_cart(param[0]['A0'])
    except KeyError:
        pass
    expected_W = hs.convert_matrix_to_cart(expected)
    my_model = hs.LeastSquares(A - A0, my_ALPHA, name='simple_least_square')
    W = my_model.solve(solver='WLS')
    print('Residual Vibration rmse calculated = ', my_model.rmse())
    print('Residual Vibration rmse from test_case = ',
          hs.rmse(hs.residual_vibration(my_ALPHA.value, expected_W, A)))
    print('expected_residual_vibration',
          hs.convert_matrix_to_math(my_model.expected_residual_vibration()))
    np.testing.assert_allclose(W, expected_W, rtol=0.05)  # allowance 5% error
 def test_performance(n):
     alpha = hs.Alpha()
     real = np.random.uniform(0, 10, [n, n])
     imag = np.random.uniform(0, 10, [n, n])
     alpha.add(real + imag * 1j)
     real = np.random.uniform(0, 10, [n, 1])
     imag = np.random.uniform(0, 10, [n, 1])
     A = real + imag * 1j
     start = time.time()
     w = hs.LeastSquares(A, alpha).solve()
     error = hs.residual_vibration(alpha.value, w, A)
     t = time.time() - start
     return round(t, 2)
def test_model_conditions():
    test_alpha_1 = hs.Alpha()
    test_alpha_1.add(np.ones((2, 2)))
    test_alpha_2 = hs.Alpha()
    test_alpha_2.add(np.ones((2, 2)) * 2)
    test_A_1 = np.ones((2, 1))
    test_A_2 = np.ones((2, 1)) * 2
    condition_1 = hs.Condition()
    condition_1.add(test_alpha_1, test_A_1)
    condition_2 = hs.Condition()
    condition_2.add(test_alpha_2, test_A_2)
    model = hs.LeastSquares(conditions=[condition_1, condition_2])
    np.testing.assert_allclose(model.ALPHA,
                               np.array([[1, 1], [1, 1], [2, 2], [2, 2]]))
    np.testing.assert_allclose(model.A, np.array([[1], [1], [2], [2]]))
def test_info_model():
    # Set random data
    np.random.seed(42)
    m = 3
    n = 3
    real = np.random.rand(m, n)
    imag = np.random.rand(m, n)
    comp = real + imag * 1j
    alpha1 = hs.Alpha()
    alpha1.add(comp)
    real = np.random.rand(m, n)
    imag = np.random.rand(m, n)
    comp = real + imag * 1j
    alpha2 = hs.Alpha()
    alpha2.add(comp)
    # Condition logging and printing
    condition1 = hs.Condition(name='Speed 1300')
    condition1.add(alpha2, A=np.random.rand(m, 1))
    condition2 = hs.Condition(name='Speed 2500')
    condition2.add(alpha2, A=np.random.rand(m, 1))
    model = hs.LeastSquares(conditions=[condition1, condition2])
    model.solve()
    angles = np.arange(100, 300, 10)  # angles
    split1 = model.create_split()
    split1.split_setup(0,
                       max_number_weights_per_hole=1,
                       holes_available=[angles],
                       weights_available=[0.1])
    split2 = model.create_split()
    split2.split_setup(1,
                       max_number_weights_per_hole=1,
                       holes_available=[angles],
                       weights_available=[0.2])
    split1.split_solve()
    split2.split_solve()
    split1.update(confirm=True)
    split2.update(confirm=True)
    print(model.info())
def test_model_LSQ(test_big_A, test_big_alpha):
    '''
    Creating a test model
    '''
    w = hs.LeastSquares(test_big_A, test_big_alpha).solve()
    return w
def test_faults():
    with pytest.raises(hs.CustomError) as error:
        hs.LeastSquares([1, 2], [1, 2])
import hsbalance as hs

A = [['170@112'],
     ['53@78']]  # --> Initial vibration conditions First Row in Table  above.
B = [
    [
        '235@94', '185@115'
    ],  # --> Vibration at sensor 1 when trial masses were added at plane 1&2 (First column for both trial runs)
    ['58@68', '77@104']
]  # Vibration at sensor 2 when trial masses were added at plane 1&2 (Second column for both trial runs)
U = ['1.15@0', '1.15@0']  # Trial masses 2.5 g at plane 1 and 2 consequently
A = hs.convert_math_cart(A)
B = hs.convert_math_cart(B)
U = hs.convert_math_cart(U)
alpha = hs.Alpha()  # Instantiate Alpha class
alpha.add(A=A, B=B, U=U)
model_LeastSquares = hs.LeastSquares(A=A, alpha=alpha)
w = model_LeastSquares.solve(
)  #  Solve the model and get the correction weights vector
# Calculate Residual vibration vector
residual_vibration = hs.residual_vibration(alpha.value, w, A)
# Caculate Root mean square error for model
RMSE = hs.rmse(residual_vibration)
# Convert w back into mathmatical expression
w = hs.convert_cart_math(w)
# print results
print(model_LeastSquares.info())