class Production(ProtocolInterface): """ Production protocol v6 Production protocol for globular and membrane proteins. You can optionally define a flatbottom potential box and atom constraints for the production run. An Acemd class object is stored in the Production object which can be used to modify futher options. For documentation on further options see :class:`Acemd <htmd.mdengine.acemd.acemd.Acemd>` Parameters ---------- runtime : float, default=0 Running time of the simulation. timeunits : str, default='steps' Units for runtime. Can be 'steps', 'ns' etc. temperature : float, default=300 Temperature of the thermostat in Kelvin fb_k : float, default=0 Force constant of the flatbottom potential in kcal/mol/A^2. E.g. 5 fb_reference : str, default='none' Reference selection to use as dynamic center of the flatbottom box. fb_selection : str, default='none' Selection of atoms to apply the flatbottom potential fb_box : list, default=[0, 0, 0, 0, 0, 0] Position of the flatbottom box in term of the reference center given as [xmin, xmax, ymin, ymax, zmin, zmax] useconstantratio : bool, default=False For membrane protein simulations set it to true so that the barostat does not modify the xy aspect ratio. useconstraints : bool, default=False Apply constraints to the production simulation, defined by the constraints parameter constraints : dict, default={} A dictionary of atomselections and values of the constraint to be applied (in kcal/mol/A^2). Atomselects must be mutually exclusive. adaptive : bool, default=False Set to True if making production runs for adaptive sampling. """ def __init__(self, _version=2): super().__init__() self._version = _version self._arg( 'acemd', ':class:`Acemd2 <htmd.apps.acemd.Acemd>` or :class:`Acemd <htmd.mdengine.acemd.acemd.Acemd>`' ' object', 'Acemd class object', None, val.Object([Acemd2, Acemd])) self._arg('runtime', 'float', 'Running time of the simulation.', 25000, val.Number(float, '0POS')) self._arg('timeunits', 'str', 'Units for runtime. Can be \'steps\', \'ns\' etc.', 'steps', val.String()) self._arg('temperature', 'float', 'Temperature of the thermostat in Kelvin', 300, val.Number(float, 'ANY')) self._arg( 'fb_k', 'float', 'Force constant of the flatbottom potential in kcal/mol/A^2. E.g. 5', 0, val.Number(float, 'ANY')) self._arg( 'fb_reference', 'str', 'Reference selection to use as dynamic center of the flatbottom box.', 'none', val.String()) self._arg('fb_selection', 'str', 'Selection of atoms to apply the flatbottom potential', 'none', val.String()) self._arg( 'fb_box', 'list', 'Position of the flatbottom box in term of the reference center given as ' '[xmin, xmax, ymin, ymax, zmin, zmax]', [0, 0, 0, 0, 0, 0], val.Number(float, 'ANY'), nargs=6) self._arg( 'useconstantratio', 'bool', 'For membrane protein simulations set it to true so that the barostat ' 'does not modify the xy aspect ratio.', False, val.Boolean()) self._arg( 'useconstraints', 'bool', 'Apply constraints to the production simulation, defined by the ' 'constraints parameter', False, val.Boolean()) self._arg( 'constraints', 'dict', 'A dictionary of atomselections and values of the constraint to be ' 'applied (in kcal/mol/A^2). Atomselects must be mutually exclusive.', {}, val.Dictionary(key_type=str)) self._arg( 'adaptive', 'bool', 'Set to True if making production runs for adaptive sampling.', False, val.Boolean()) self._arg( 'restraints', 'list', 'A list of restraint objects. Only works with {}(_version=3),' 'see :class:`AtomRestraint <htmd.mdengine.acemd.acemd.AtomRestraint>` and' ':class:`GroupRestraint <htmd.mdengine.acemd.acemd.GroupRestraint>`' ')'.format(self.__class__.__name__), None, val.Object(_Restraint), nargs='*') if self._version == 2: self.acemd = Acemd2() self.acemd.binindex = None self.acemd.binvelocities = None self.acemd.bincoordinates = 'output.coor' self.acemd.extendedsystem = 'output.xsc' self.acemd.coordinates = None self.acemd.structure = None self.acemd.parameters = None self.acemd.temperature = None self.acemd.restart = 'on' self.acemd.restartfreq = '5000' self.acemd.outputname = 'output' self.acemd.xtcfile = 'output.xtc' self.acemd.xtcfreq = '25000' self.acemd.timestep = '4' self.acemd.rigidbonds = 'all' self.acemd.hydrogenscale = '4' self.acemd.switching = 'on' self.acemd.switchdist = '7.5' self.acemd.cutoff = '9' self.acemd.exclude = 'scaled1-4' self.acemd.scaling14 = '1.0' self.acemd.langevin = 'on' self.acemd.langevintemp = None self.acemd.langevindamping = '0.1' self.acemd.pme = 'on' self.acemd.pmegridspacing = '1.0' self.acemd.fullelectfrequency = '2' self.acemd.energyfreq = '5000' self.acemd.consref = None self.acemd.run = '$numsteps' self.acemd.TCL = (''' set numsteps {NUMSTEPS} set fb_refindex {{ {REFINDEX} }} set fb_selindex {{ {SELINDEX} }} set fb_box {{ {BOX} }} set fb_K {KCONST} # ''', ''' proc flatbot1d {x xm xM fb_K} { set f 0 if {$x < $xm} { set f [expr $fb_K*[expr $xm-$x]] } if {$x > $xM} { set f [expr $fb_K*[expr $xM-$x]] } return $f } proc calcforces_init {} { global ref sel fb_refindex fb_selindex berendsenpressure off set ref [addgroup $fb_refindex] set sel [addgroup $fb_selindex] } proc calcforces {} { global ref sel fb_K fb_box loadcoords coords ##FLATBOTTOM if {$fb_K>0} { set r0 $coords($ref) set r1 $coords($sel) set dr [vecsub $r1 $r0] set fx [flatbot1d [lindex $dr 0] [lindex $fb_box 0] [lindex $fb_box 1] $fb_K] set fy [flatbot1d [lindex $dr 1] [lindex $fb_box 2] [lindex $fb_box 3] $fb_K] set fz [flatbot1d [lindex $dr 2] [lindex $fb_box 4] [lindex $fb_box 5] $fb_K] #print "dr: $dr fx: $fx fy: $fy fz: $fz" addforce $sel [list $fx $fy $fz] } } proc calcforces_endstep { } { } ''') elif self._version == 3: self.acemd = Acemd() self.acemd.binvelocities = None self.acemd.bincoordinates = 'output.coor' self.acemd.extendedsystem = 'output.xsc' self.acemd.coordinates = None self.acemd.structure = None self.acemd.parameters = None self.acemd.restart = 'on' self.acemd.trajectoryfile = 'output.xtc' self.acemd.trajectoryfreq = 25000 self.acemd.timestep = 4 self.acemd.switching = 'on' self.acemd.switchdist = 7.5 self.acemd.cutoff = 9 self.acemd.thermostat = 'on' self.acemd.thermostatdamping = 0.1 self.acemd.pme = 'on' else: raise ValueError( '_version can not be {}. Choose either 2 or 3.'.format( self._version)) def _findFiles(self, inputdir): # Tries to find default files if the given don't exist defaults = { 'coordinates': ('structure.pdb', ), 'structure': ('structure.psf', 'structure.prmtop'), 'parameters': ('parameters', 'structure.prmtop') } for field in defaults: userval = self.acemd.__dict__[field] if userval is not None and not os.path.exists( os.path.join(inputdir, userval)): raise RuntimeError( 'Could not locate file {} set by the user for argument ' 'Production.acemd.{}'.format( os.path.join(inputdir, userval), field)) if self.acemd.__dict__[field] is None: for val in defaults[field]: if os.path.exists(os.path.join(inputdir, val)): self.acemd.__dict__[field] = val break if userval is not None and self.acemd.__dict__[ field] is not None and self.acemd.__dict__[ field] != userval: logger.warning( 'Could not locate structure file {}. Using {} instead.'. format(os.path.join(inputdir, userval), os.path.join(inputdir, self.acemd.__dict__[field]))) elif self.acemd.__dict__[field] is None: raise RuntimeError( 'Could not locate any {f:} file in {i:}. ' 'Please set the Production.acemd.{f:} property to ' 'point to the {f:} file'.format(f=field, i=inputdir)) if self._version == 2: if self.useconstraints and self.acemd.consref is None: self.acemd.consref = self.acemd.coordinates def _amberFixes(self): # AMBER specific fixes if self.acemd.structure.endswith('.prmtop'): self.acemd.parmfile = self.acemd.parameters self.acemd.parameters = None if self._version == 2: self.acemd.scaling14 = '0.8333333' self.acemd.amber = 'on' def _fb_potential2restraints(self, inputdir): from moleculekit.molecule import Molecule restraints = list() fb_box = np.array(self.fb_box) # convert fb_box to width width = list( np.concatenate( np.diff(np.array([fb_box[::2], fb_box[1::2]]), axis=0))) # If fb_box is not symmetrical if not np.all(fb_box[::2] == -fb_box[1::2]): # convert fb_box and fb_reference to fbcentre and width mol = Molecule(os.path.join(inputdir, self.acemd.structure)) mol.read(os.path.join(inputdir, self.acemd.coordinates)) fb_refcentre = mol.get( 'coords', sel=self.fb_reference).mean(axis=0).squeeze() fbcentre = list( np.around( np.mean(np.array([fb_box[::2], fb_box[1::2]]), axis=0) + fb_refcentre, 3)) restraints.append( GroupRestraint(self.fb_selection, width, [(self.fb_k, 0)], fbcentre=fbcentre)) else: restraints.append( GroupRestraint(self.fb_selection, width, [(self.fb_k, 0)], fbcentresel=self.fb_reference)) return restraints def _constraints2restraints(self): restraints = list() for constr in sorted(self.constraints): restraints.append( AtomRestraint(constr, 0, [(self.constraints[constr], 0)])) return restraints def write(self, inputdir, outputdir): """ Writes the production protocol and files into a folder. Parameters ---------- inputdir : str Path to a directory containing the files produced by a equilibration process. outputdir : str Directory where to write the production setup files. """ from moleculekit.molecule import Molecule # Do version consistency check if (self._version == 2 and not isinstance(self.acemd, Acemd2)) and \ (self._version == 3 and not isinstance(self.acemd, Acemd)): raise RuntimeError( 'Acemd object version ({}) inconsistent with protocol version at instantiation ' '({})'.format(type(self.acemd), self._version)) self._findFiles(inputdir) self._amberFixes() if self._version == 2: self.acemd.temperature = str(self.temperature) self.acemd.langevintemp = str(self.temperature) elif self._version == 3: self.acemd.temperature = self.temperature self.acemd.thermostattemp = self.temperature from htmd.units import convert numsteps = convert(self.timeunits, 'timesteps', self.runtime, timestep=self.acemd.timestep) if self._version == 3: self.acemd.run = str(numsteps) pdbfile = os.path.join(inputdir, self.acemd.coordinates) inmol = Molecule(pdbfile) if np.any(inmol.atomselect('lipids')) and not self.useconstantratio: logger.warning( 'Lipids detected in input structure. We highly recommend setting useconstantratio=True ' 'for membrane simulations.') if self._version == 2: if self.restraints: raise RuntimeWarning( 'restraints are only available on {}(_version=3)'.format( self.__class__.__name__)) if self.fb_k > 0: # use TCL only for flatbottom self.acemd.tclforces = 'on' if isinstance(self.acemd.TCL, tuple): tcl = list(self.acemd.TCL) tcl[0] = tcl[0].format( NUMSTEPS=numsteps, TEMPERATURE=self.temperature, KCONST=self.fb_k, REFINDEX=' '.join( map(str, inmol.get('index', self.fb_reference))), SELINDEX=' '.join( map(str, inmol.get('index', self.fb_selection))), BOX=' '.join(map(str, self.fb_box))) self.acemd.TCL = tcl[0] + tcl[1] else: logger.warning( '{} default TCL was already formatted.'.format( self.__class__.__name__)) else: self.acemd.TCL = 'set numsteps {NUMSTEPS}\n'.format( NUMSTEPS=numsteps) if self.useconstraints: # Turn on constraints self.acemd.constraints = 'on' self.acemd.constraintscaling = '1.0' else: if len(self.constraints) != 0: logger.warning( 'You have setup constraints to {} but constraints are turned off. ' 'If you want to use constraints, define ' 'useconstraints=True'.format(self.constraints)) elif self._version == 3: if self.restraints is not None: logger.info( 'Using user-provided restraints and ignoring constraints and fb_potential' ) self.acemd.restraints = self.restraints else: restraints = list() if self.fb_k > 0: logger.warning( 'Converting fb_potential to restraints. This is a convenience ' 'functional conversion. We recommend start using restraints with ' '{}(_version=3)'.format(self.__class__.__name__)) restraints += self._fb_potential2restraints(inputdir) if self.useconstraints: logger.warning( 'Converting constraints to restraints. This is a convenience ' 'functional conversion. We recommend start using restraints with ' '{}(_version=3)'.format(self.__class__.__name__)) restraints += self._constraints2restraints() else: if len(self.constraints) != 0: logger.warning( 'You have setup constraints to {} but constraints are turned off. ' 'If you want to use constraints, define ' 'useconstraints=True'.format(self.constraints)) if len(restraints) != 0: self.acemd.restraints = restraints if self.useconstantratio: self.acemd.useconstantratio = 'on' if self.adaptive: self.acemd.binvelocities = None self.acemd.setup(inputdir, outputdir, overwrite=True) if self._version == 2: # Adding constraints by writing them to the consref file if self.useconstraints: inconsreffile = os.path.join(inputdir, self.acemd.consref) consrefmol = Molecule(inconsreffile) consrefmol.set('occupancy', 0) consrefmol.set('beta', 0) if len(self.constraints) == 0: raise RuntimeError( 'You have set the production to use constraints (useconstraints=True), but have ' 'not defined any constraints (constraints={}).') else: for sel in self.constraints: consrefmol.set('beta', self.constraints[sel], sel) outconsreffile = os.path.join(outputdir, self.acemd.consref) consrefmol.write(outconsreffile) def addConstraint(self, atomselect, factor=1): """ Convenience function for adding a new constraint to existing constraints. Parameters ---------- atomselect : str Atom selection of atoms we want to constrain factor : float The scaling factor of the constraints applied to the atoms Example ------- >>> eq.addConstraint('chain X', 0.3) """ self.constraints[atomselect] = factor
class Production(ProtocolInterface): """ Production protocol v6 Production protocol for globular and membrane proteins. You can optionally define a flatbottom potential box and atom constraints for the production run. An Acemd class object is stored in the Production object which can be used to modify futher options. For documentation on further options see :class:`Acemd <htmd.mdengine.acemd.acemd.Acemd>` Parameters ---------- runtime : float, default=0 Running time of the simulation. timeunits : str, default='steps' Units for runtime. Can be 'steps', 'ns' etc. temperature : float, default=300 Temperature of the thermostat in Kelvin fb_k : float, default=0 Force constant of the flatbottom potential in kcal/mol/A^2. E.g. 5 fb_reference : str, default='none' Reference selection to use as dynamic center of the flatbottom box. fb_selection : str, default='none' Selection of atoms to apply the flatbottom potential fb_box : list, default=[0, 0, 0, 0, 0, 0] Position of the flatbottom box in term of the reference center given as [xmin, xmax, ymin, ymax, zmin, zmax] useconstantratio : bool, default=False For membrane protein simulations set it to true so that the barostat does not modify the xy aspect ratio. useconstraints : bool, default=False Apply constraints to the production simulation, defined by the constraints parameter constraints : dict, default={} A dictionary of atomselections and values of the constraint to be applied (in kcal/mol/A^2). Atomselects must be mutually exclusive. adaptive : bool, default=False Set to True if making production runs for adaptive sampling. """ def __init__(self, _version=2): super().__init__() self._version = _version self._arg('acemd', ':class:`Acemd2 <htmd.apps.acemd.Acemd>` or :class:`Acemd <htmd.mdengine.acemd.acemd.Acemd>`' ' object', 'Acemd class object', None, val.Object([Acemd2, Acemd])) self._arg('runtime', 'float', 'Running time of the simulation.', 25000, val.Number(float, '0POS')) self._arg('timeunits', 'str', 'Units for runtime. Can be \'steps\', \'ns\' etc.', 'steps', val.String()) self._arg('temperature', 'float', 'Temperature of the thermostat in Kelvin', 300, val.Number(float, 'ANY')) self._arg('fb_k', 'float', 'Force constant of the flatbottom potential in kcal/mol/A^2. E.g. 5', 0, val.Number(float, 'ANY')) self._arg('fb_reference', 'str', 'Reference selection to use as dynamic center of the flatbottom box.', 'none', val.String()) self._arg('fb_selection', 'str', 'Selection of atoms to apply the flatbottom potential', 'none', val.String()) self._arg('fb_box', 'list', 'Position of the flatbottom box in term of the reference center given as ' '[xmin, xmax, ymin, ymax, zmin, zmax]', [0, 0, 0, 0, 0, 0], val.Number(float, 'ANY'), nargs=6) self._arg('useconstantratio', 'bool', 'For membrane protein simulations set it to true so that the barostat ' 'does not modify the xy aspect ratio.', False, val.Boolean()) self._arg('useconstraints', 'bool', 'Apply constraints to the production simulation, defined by the ' 'constraints parameter', False, val.Boolean()) self._arg('constraints', 'dict', 'A dictionary of atomselections and values of the constraint to be ' 'applied (in kcal/mol/A^2). Atomselects must be mutually exclusive.', {}, val.Dictionary(key_type=str)) self._arg('adaptive', 'bool', 'Set to True if making production runs for adaptive sampling.', False, val.Boolean()) self._arg('restraints', 'list', 'A list of restraint objects. Only works with {}(_version=3),' 'see :class:`AtomRestraint <htmd.mdengine.acemd.acemd.AtomRestraint>` and' ':class:`GroupRestraint <htmd.mdengine.acemd.acemd.GroupRestraint>`' ')'.format(self.__class__.__name__), None, val.Object(_Restraint), nargs='*') if self._version == 2: self.acemd = Acemd2() self.acemd.binindex = None self.acemd.binvelocities = None self.acemd.bincoordinates = 'output.coor' self.acemd.extendedsystem = 'output.xsc' self.acemd.coordinates = None self.acemd.structure = None self.acemd.parameters = None self.acemd.temperature = None self.acemd.restart = 'on' self.acemd.restartfreq = '5000' self.acemd.outputname = 'output' self.acemd.xtcfile = 'output.xtc' self.acemd.xtcfreq = '25000' self.acemd.timestep = '4' self.acemd.rigidbonds = 'all' self.acemd.hydrogenscale = '4' self.acemd.switching = 'on' self.acemd.switchdist = '7.5' self.acemd.cutoff = '9' self.acemd.exclude = 'scaled1-4' self.acemd.scaling14 = '1.0' self.acemd.langevin = 'on' self.acemd.langevintemp = None self.acemd.langevindamping = '0.1' self.acemd.pme = 'on' self.acemd.pmegridspacing = '1.0' self.acemd.fullelectfrequency = '2' self.acemd.energyfreq = '5000' self.acemd.consref = None self.acemd.run = '$numsteps' self.acemd.TCL = (''' set numsteps {NUMSTEPS} set fb_refindex {{ {REFINDEX} }} set fb_selindex {{ {SELINDEX} }} set fb_box {{ {BOX} }} set fb_K {KCONST} # ''', ''' proc flatbot1d {x xm xM fb_K} { set f 0 if {$x < $xm} { set f [expr $fb_K*[expr $xm-$x]] } if {$x > $xM} { set f [expr $fb_K*[expr $xM-$x]] } return $f } proc calcforces_init {} { global ref sel fb_refindex fb_selindex berendsenpressure off set ref [addgroup $fb_refindex] set sel [addgroup $fb_selindex] } proc calcforces {} { global ref sel fb_K fb_box loadcoords coords ##FLATBOTTOM if {$fb_K>0} { set r0 $coords($ref) set r1 $coords($sel) set dr [vecsub $r1 $r0] set fx [flatbot1d [lindex $dr 0] [lindex $fb_box 0] [lindex $fb_box 1] $fb_K] set fy [flatbot1d [lindex $dr 1] [lindex $fb_box 2] [lindex $fb_box 3] $fb_K] set fz [flatbot1d [lindex $dr 2] [lindex $fb_box 4] [lindex $fb_box 5] $fb_K] #print "dr: $dr fx: $fx fy: $fy fz: $fz" addforce $sel [list $fx $fy $fz] } } proc calcforces_endstep { } { } ''') elif self._version == 3: self.acemd = Acemd() self.acemd.binvelocities = None self.acemd.bincoordinates = 'output.coor' self.acemd.extendedsystem = 'output.xsc' self.acemd.coordinates = None self.acemd.structure = None self.acemd.parameters = None self.acemd.restart = 'on' self.acemd.trajectoryfile = 'output.xtc' self.acemd.trajectoryfreq = 25000 self.acemd.timestep = 4 self.acemd.switching = 'on' self.acemd.switchdist = 7.5 self.acemd.cutoff = 9 self.acemd.thermostat = 'on' self.acemd.thermostatdamping = 0.1 self.acemd.pme = 'on' else: raise ValueError('_version can not be {}. Choose either 2 or 3.'.format(self._version)) def _findFiles(self, inputdir): # Tries to find default files if the given don't exist defaults = {'coordinates': ('structure.pdb',), 'structure': ('structure.psf', 'structure.prmtop'), 'parameters': ('parameters', 'structure.prmtop')} for field in defaults: userval = self.acemd.__dict__[field] if userval is not None and not os.path.exists(os.path.join(inputdir, userval)): raise RuntimeError('Could not locate file {} set by the user for argument ' 'Production.acemd.{}'.format(os.path.join(inputdir, userval), field)) if self.acemd.__dict__[field] is None: for val in defaults[field]: if os.path.exists(os.path.join(inputdir, val)): self.acemd.__dict__[field] = val break if userval is not None and self.acemd.__dict__[field] is not None and self.acemd.__dict__[field] != userval: logger.warning('Could not locate structure file {}. Using {} instead.'.format( os.path.join(inputdir, userval), os.path.join(inputdir, self.acemd.__dict__[field]) )) elif self.acemd.__dict__[field] is None: raise RuntimeError('Could not locate any {f:} file in {i:}. ' 'Please set the Production.acemd.{f:} property to ' 'point to the {f:} file'.format(f=field, i=inputdir)) if self._version == 2: if self.useconstraints and self.acemd.consref is None: self.acemd.consref = self.acemd.coordinates def _amberFixes(self): # AMBER specific fixes if self.acemd.structure.endswith('.prmtop'): self.acemd.parmfile = self.acemd.parameters self.acemd.parameters = None if self._version == 2: self.acemd.scaling14 = '0.8333333' self.acemd.amber = 'on' def _fb_potential2restraints(self, inputdir): from htmd.molecule.molecule import Molecule restraints = list() fb_box = np.array(self.fb_box) # convert fb_box to width width = list(np.concatenate(np.diff(np.array([fb_box[::2], fb_box[1::2]]), axis=0))) # If fb_box is not symmetrical if not np.all(fb_box[::2] == -fb_box[1::2]): # convert fb_box and fb_reference to fbcentre and width mol = Molecule(os.path.join(inputdir, self.acemd.structure)) mol.read(os.path.join(inputdir, self.acemd.coordinates)) fb_refcentre = mol.get('coords', sel=self.fb_reference).mean(axis=0).squeeze() fbcentre = list(np.around(np.mean(np.array([fb_box[::2], fb_box[1::2]]), axis=0) + fb_refcentre, 3)) restraints.append(GroupRestraint(self.fb_selection, width, [(self.fb_k, 0)], fbcentre=fbcentre)) else: restraints.append(GroupRestraint(self.fb_selection, width, [(self.fb_k, 0)], fbcentresel=self.fb_reference)) return restraints def _constraints2restraints(self): restraints = list() for constr in sorted(self.constraints): restraints.append(AtomRestraint(constr, 0, [(self.constraints[constr], 0)])) return restraints def write(self, inputdir, outputdir): """ Writes the production protocol and files into a folder. Parameters ---------- inputdir : str Path to a directory containing the files produced by a equilibration process. outputdir : str Directory where to write the production setup files. """ from htmd.molecule.molecule import Molecule # Do version consistency check if (self._version == 2 and not isinstance(self.acemd, Acemd2)) and \ (self._version == 3 and not isinstance(self.acemd, Acemd)): raise RuntimeError('Acemd object version ({}) inconsistent with protocol version at instantiation ' '({})'.format(type(self.acemd), self._version)) self._findFiles(inputdir) self._amberFixes() if self._version == 2: self.acemd.temperature = str(self.temperature) self.acemd.langevintemp = str(self.temperature) elif self._version == 3: self.acemd.temperature = self.temperature self.acemd.thermostattemp = self.temperature from htmd.units import convert numsteps = convert(self.timeunits, 'timesteps', self.runtime, timestep=self.acemd.timestep) if self._version == 3: self.acemd.run = str(numsteps) pdbfile = os.path.join(inputdir, self.acemd.coordinates) inmol = Molecule(pdbfile) if np.any(inmol.atomselect('lipids')) and not self.useconstantratio: logger.warning('Lipids detected in input structure. We highly recommend setting useconstantratio=True ' 'for membrane simulations.') if self._version == 2: if self.restraints: raise RuntimeWarning('restraints are only available on {}(_version=3)'.format(self.__class__.__name__)) if self.fb_k > 0: # use TCL only for flatbottom self.acemd.tclforces = 'on' if isinstance(self.acemd.TCL, tuple): tcl = list(self.acemd.TCL) tcl[0] = tcl[0].format(NUMSTEPS=numsteps, TEMPERATURE=self.temperature, KCONST=self.fb_k, REFINDEX=' '.join(map(str, inmol.get('index', self.fb_reference))), SELINDEX=' '.join(map(str, inmol.get('index', self.fb_selection))), BOX=' '.join(map(str, self.fb_box))) self.acemd.TCL = tcl[0] + tcl[1] else: logger.warning('{} default TCL was already formatted.'.format(self.__class__.__name__)) else: self.acemd.TCL = 'set numsteps {NUMSTEPS}\n'.format(NUMSTEPS=numsteps) if self.useconstraints: # Turn on constraints self.acemd.constraints = 'on' self.acemd.constraintscaling = '1.0' else: if len(self.constraints) != 0: logger.warning('You have setup constraints to {} but constraints are turned off. ' 'If you want to use constraints, define ' 'useconstraints=True'.format(self.constraints)) elif self._version == 3: if self.restraints is not None: logger.info('Using user-provided restraints and ignoring constraints and fb_potential') self.acemd.restraints = self.restraints else: restraints = list() if self.fb_k > 0: logger.warning('Converting fb_potential to restraints. This is a convenience ' 'functional conversion. We recommend start using restraints with ' '{}(_version=3)'.format(self.__class__.__name__)) restraints += self._fb_potential2restraints(inputdir) if self.useconstraints: logger.warning('Converting constraints to restraints. This is a convenience ' 'functional conversion. We recommend start using restraints with ' '{}(_version=3)'.format(self.__class__.__name__)) restraints += self._constraints2restraints() else: if len(self.constraints) != 0: logger.warning('You have setup constraints to {} but constraints are turned off. ' 'If you want to use constraints, define ' 'useconstraints=True'.format(self.constraints)) if len(restraints) != 0: self.acemd.restraints = restraints if self.useconstantratio: self.acemd.useconstantratio = 'on' if self.adaptive: self.acemd.binvelocities = None self.acemd.setup(inputdir, outputdir, overwrite=True) if self._version == 2: # Adding constraints by writing them to the consref file if self.useconstraints: inconsreffile = os.path.join(inputdir, self.acemd.consref) consrefmol = Molecule(inconsreffile) consrefmol.set('occupancy', 0) consrefmol.set('beta', 0) if len(self.constraints) == 0: raise RuntimeError('You have set the production to use constraints (useconstraints=True), but have ' 'not defined any constraints (constraints={}).') else: for sel in self.constraints: consrefmol.set('beta', self.constraints[sel], sel) outconsreffile = os.path.join(outputdir, self.acemd.consref) consrefmol.write(outconsreffile) def addConstraint(self, atomselect, factor=1): """ Convenience function for adding a new constraint to existing constraints. Parameters ---------- atomselect : str Atom selection of atoms we want to constrain factor : float The scaling factor of the constraints applied to the atoms Example ------- >>> eq.addConstraint('chain X', 0.3) """ self.constraints[atomselect] = factor
class Production(ProtocolInterface): """Production protocol v6 Production protocol for globular and membrane proteins. You can optionally define a flatbottom potential box and atom constraints for the production run. An Acemd class object is stored in the Production object which can be used to modify futher options. For documentation on further options see :class:`Acemd <htmd.mdengine.acemd.acemd.Acemd>` Parameters ---------- runtime : float, default=0 Running time of the simulation. timeunits : str, default='steps' Units for runtime. Can be 'steps', 'ns' etc. temperature : float, default=300 Temperature of the thermostat in Kelvin useconstantratio : bool, default=False For membrane protein simulations set it to true so that the barostat does not modify the xy aspect ratio. restraints : list, default=None A list of restraint objects. See :class:`AtomRestraint <htmd.mdengine.acemd.acemd.AtomRestraint>` and :class:`GroupRestraint<htmd.mdengine.acemd.acemd.GroupRestraint>`) adaptive : bool, default=False Set to True if making production runs for adaptive sampling. Example ------- >>> from htmd.protocols.production_v6 import Production >>> from htmd.mdengine.acemd.acemd import GroupRestraint >>> md = Production() >>> md.runtime = 4 >>> md.timeunits = 'ns' >>> md.temperature = 300 >>> md.useconstantratio = True # only for membrane sims Use a 10x10x30A flat bottom potential centered on protein residue 142 to prevent the ligand from crossing periodic boxes ending up on the other side of the membrane. >>> width = [10, 10, 30] >>> flatbot = GroupRestraint('segname L and noh', width, [(5, '0ns')], fbcentersel="protein and resid 142") >>> md.restraints = flatbot >>> md.write('./build','./equil') """ def __init__(self): super().__init__() self._arg( "acemd", ":class:`Acemd <htmd.mdengine.acemd.acemd.Acemd>`" " object", "Acemd class object", None, val.Object(Acemd), ) self._arg( "runtime", "float", "Running time of the simulation.", 25000, val.Number(float, "0POS"), ) self._arg( "timeunits", "str", "Units for runtime. Can be 'steps', 'ns' etc.", "steps", val.String(), ) self._arg( "temperature", "float", "Temperature of the thermostat in Kelvin", 300, val.Number(float, "ANY"), ) self._arg( "fb_k", "float", "Force constant of the flatbottom potential in kcal/mol/A^2. E.g. 5", 0, val.Number(float, "ANY"), ) self._arg( "fb_reference", "str", "Reference selection to use as dynamic center of the flatbottom box.", "none", val.String(), ) self._arg( "fb_selection", "str", "Selection of atoms to apply the flatbottom potential", "none", val.String(), ) self._arg( "fb_box", "list", "Position of the flatbottom box in term of the reference center given as " "[xmin, xmax, ymin, ymax, zmin, zmax]", [0, 0, 0, 0, 0, 0], val.Number(float, "ANY"), nargs=6, ) self._arg( "useconstantratio", "bool", "For membrane protein simulations set it to true so that the barostat " "does not modify the xy aspect ratio.", False, val.Boolean(), ) self._arg( "useconstraints", "bool", "Apply constraints to the production simulation, defined by the " "constraints parameter", False, val.Boolean(), ) self._arg( "constraints", "dict", "A dictionary of atomselections and values of the constraint to be " "applied (in kcal/mol/A^2). Atomselects must be mutually exclusive.", {}, val.Dictionary(key_type=str), ) self._arg( "adaptive", "bool", "Set to True if making production runs for adaptive sampling.", False, val.Boolean(), ) self._arg( "restraints", "list", "A list of restraint objects." "See :class:`AtomRestraint <htmd.mdengine.acemd.acemd.AtomRestraint>` and" ":class:`GroupRestraint <htmd.mdengine.acemd.acemd.GroupRestraint>`" ")", None, val.Object(_Restraint), nargs="*", ) self.acemd = Acemd() self.acemd.binvelocities = None self.acemd.bincoordinates = "output.coor" self.acemd.extendedsystem = "output.xsc" self.acemd.coordinates = None self.acemd.structure = None self.acemd.parameters = None self.acemd.restart = "on" self.acemd.trajectoryfile = "output.xtc" self.acemd.trajectoryperiod = 25000 self.acemd.timestep = 4 self.acemd.switching = "on" self.acemd.switchdistance = 7.5 self.acemd.cutoff = 9 self.acemd.thermostat = "on" self.acemd.thermostatdamping = 0.1 self.acemd.pme = "on" def _findFiles(self, inputdir): # Tries to find default files if the given don't exist defaults = { "coordinates": ("structure.pdb", ), "structure": ("structure.psf", "structure.prmtop"), "parameters": ("parameters", "structure.prmtop"), } for field in defaults: userval = self.acemd.__dict__[field] if userval is not None and not os.path.exists( os.path.join(inputdir, userval)): raise RuntimeError( "Could not locate file {} set by the user for argument " "Production.acemd.{}".format( os.path.join(inputdir, userval), field)) if self.acemd.__dict__[field] is None: for vv in defaults[field]: if os.path.exists(os.path.join(inputdir, vv)): self.acemd.__dict__[field] = vv break if (userval is not None and self.acemd.__dict__[field] is not None and self.acemd.__dict__[field] != userval): logger.warning( "Could not locate structure file {}. Using {} instead.". format( os.path.join(inputdir, userval), os.path.join(inputdir, self.acemd.__dict__[field]), )) elif self.acemd.__dict__[field] is None: raise RuntimeError( "Could not locate any {f:} file in {i:}. " "Please set the Production.acemd.{f:} property to " "point to the {f:} file".format(f=field, i=inputdir)) def _amberFixes(self): # AMBER specific fixes if self.acemd.structure.endswith(".prmtop"): self.acemd.parmfile = self.acemd.parameters self.acemd.parameters = None def _fb_potential2restraints(self, inputdir): from moleculekit.molecule import Molecule restraints = list() fb_box = np.array(self.fb_box) # convert fb_box to width width = list( np.concatenate( np.diff(np.array([fb_box[::2], fb_box[1::2]]), axis=0))) # If fb_box is not symmetrical if not np.all(fb_box[::2] == -fb_box[1::2]): # convert fb_box and fb_reference to fbcentre and width mol = Molecule(os.path.join(inputdir, self.acemd.structure)) mol.read(os.path.join(inputdir, self.acemd.coordinates)) fb_refcentre = (mol.get( "coords", sel=self.fb_reference).mean(axis=0).squeeze()) fbcentre = list( np.around( np.mean(np.array([fb_box[::2], fb_box[1::2]]), axis=0) + fb_refcentre, 3, )) restraints.append( GroupRestraint(self.fb_selection, width, [(self.fb_k, 0)], fbcentre=fbcentre)) else: restraints.append( GroupRestraint( self.fb_selection, width, [(self.fb_k, 0)], fbcentresel=self.fb_reference, )) return restraints def _constraints2restraints(self): restraints = list() for constr in sorted(self.constraints): restraints.append( AtomRestraint(constr, 0, [(self.constraints[constr], 0)])) return restraints def write(self, inputdir, outputdir, cisbondcheck=True): """Writes the production protocol and files into a folder. Parameters ---------- inputdir : str Path to a directory containing the files produced by a equilibration process. outputdir : str Directory where to write the production setup files. cisbondcheck : bool Set to False to disable the cis peptidic bond checks """ from moleculekit.molecule import Molecule from htmd.units import convert from htmd.builder.builder import detectCisPeptideBonds self._findFiles(inputdir) self._amberFixes() self.acemd.temperature = self.temperature self.acemd.thermostattemperature = self.temperature numsteps = convert(self.timeunits, "timesteps", self.runtime, timestep=self.acemd.timestep) self.acemd.run = str(numsteps) structfile = os.path.join(inputdir, self.acemd.structure) pdbfile = os.path.join(inputdir, self.acemd.coordinates) inmol = Molecule([structfile, pdbfile]) if cisbondcheck: detectCisPeptideBonds(inmol, respect_bonds=True) if np.any(inmol.atomselect("lipids")) and not self.useconstantratio: logger.warning( "Lipids detected in input structure. We highly recommend setting useconstantratio=True " "for membrane simulations.") if self.restraints is not None: logger.info( "Using user-provided restraints and ignoring constraints and fb_potential" ) self.acemd.restraints = self.restraints else: restraints = list() if self.fb_k > 0: logger.warning( "Converting fb_potential to restraints. This is a convenience " "functional conversion. We recommend to start using restraints." ) restraints += self._fb_potential2restraints(inputdir) if self.useconstraints: logger.warning( "Converting constraints to restraints. This is a convenience " "functional conversion. We recommend to start using restraints" ) restraints += self._constraints2restraints() else: if len(self.constraints) != 0: logger.warning( "You have setup constraints to {} but constraints are turned off. " "If you want to use constraints, define " "useconstraints=True".format(self.constraints)) if len(restraints) != 0: self.acemd.restraints = restraints if self.useconstantratio: self.acemd.barostatconstratio = "on" if self.adaptive: self.acemd.binvelocities = None self.acemd.setup(inputdir, outputdir, overwrite=True) def addConstraint(self, atomselect, factor=1): """Convenience function for adding a new constraint to existing constraints. Parameters ---------- atomselect : str Atom selection of atoms we want to constrain factor : float The scaling factor of the constraints applied to the atoms Example ------- >>> eq.addConstraint('chain X', 0.3) """ self.constraints[atomselect] = factor
class Equilibration(ProtocolInterface): """Equilibration protocol v3 Equilibration protocol for globular and membrane proteins Supporst extra restraints like a flatbottom potential box to retain a ligand for example within this box. Parameters ---------- runtime : float, default=0 Running time of the simulation. timeunits : str, default='steps' Units for time arguments. Can be 'steps', 'ns' etc. temperature : float, default=300 Temperature of the thermostat in Kelvin restraints : list, default=None A list of restraint objects. See :class:`AtomRestraint <htmd.mdengine.acemd.acemd.AtomRestraint>` and:class:`GroupRestraint<htmd.mdengine.acemd.acemd.GroupRestraint>`) useconstantratio : bool, default=False For membrane protein simulations set it to true so that the barostat does not modify the xy aspect ratio. restraintsteps : int, default=None Number of initial steps to apply restraints in units of 4fs. Defaults to half the simulation time. Example ------- >>> from htmd.protocols.equilibration_v3 import Equilibration >>> from htmd.mdengine.acemd.acemd import GroupRestraint >>> md = Equilibration() >>> md.runtime = 4 >>> md.timeunits = 'ns' >>> md.temperature = 300 >>> md.useconstantratio = True # only for membrane sims Use a 10A flat bottom potential to prevent the ligand from diffusing from original position during equilibration >>> width = np.array([10, 10, 10]) >>> flatbot = GroupRestraint('segname L and noh', width, [(5, '0ns')]) Add also the default restraints for protein >>> mol = Molecule("./build/structure.pdb") >>> md.restraints = [flatbot,] + md.defaultEquilRestraints('2ns', mol) >>> md.write('./build','./equil') """ def __init__(self, _version=_config["acemdversion"]): if _version == 2: raise RuntimeError("Equilibration v3 only supports _version=3") super().__init__() self._arg( "acemd", ":class:`Acemd <htmd.mdengine.acemd.acemd.Acemd>` object", "Acemd class object", None, val.Object([Acemd2, Acemd]), ) self._arg( "runtime", "float", "Running time of the simulation.", 25000, val.Number(float, "0POS"), ) self._arg( "timeunits", "str", "Units for time arguments. Can be 'steps', 'ns' etc.", "steps", val.String(), ) self._arg( "temperature", "float", "Temperature of the thermostat in Kelvin", 300, val.Number(float, "ANY"), ) self._arg( "useconstantratio", "bool", "For membrane protein simulations set it to true so that the barostat " "does not modify the xy aspect ratio.", False, val.Boolean(), ) self._arg( "restraintsteps", "int", "Number of initial steps to apply restraints in units of 4fs. Defaults " "to half the simulation time.", None, val.Number(int, "ANY"), ) self._arg( "restraints", "list", "A list of restraint objects. If None will apply defaultEquilRestraints decaying over half the runtime. If no restraints are required set to empty list []." "See :class:`AtomRestraint <htmd.mdengine.acemd.acemd.AtomRestraint>` and" ":class:`GroupRestraint <htmd.mdengine.acemd.acemd.GroupRestraint>`)", None, val.Object(_Restraint), nargs="*", ) self.acemd = Acemd() self.acemd.coordinates = None self.acemd.structure = None self.acemd.parameters = None self.acemd.restart = "on" self.acemd.trajectoryfile = "output.xtc" self.acemd.trajectoryperiod = 25000 self.acemd.timestep = 4 self.acemd.switching = "on" self.acemd.switchdistance = 7.5 self.acemd.cutoff = 9 self.acemd.thermostat = "on" self.acemd.thermostatdamping = 1 self.acemd.pme = "on" self.acemd.barostat = "on" self.acemd.barostatpressure = 1.01325 self.acemd.minimize = 500 def _findFiles(self, inputdir): # Tries to find default files if the given don't exist defaults = { "coordinates": ("structure.pdb", ), "structure": ("structure.psf", "structure.prmtop"), "parameters": ("parameters", "structure.prmtop"), } for field in defaults: userval = self.acemd.__dict__[field] if userval is not None and not os.path.exists( os.path.join(inputdir, userval)): self.acemd.__dict__[field] = None if self.acemd.__dict__[field] is None: for val in defaults[field]: if os.path.exists(os.path.join(inputdir, val)): self.acemd.__dict__[field] = val break if (userval is not None and self.acemd.__dict__[field] is not None and self.acemd.__dict__[field] != userval): logger.warning( "Could not locate structure file {}. Using {} instead.". format( os.path.join(inputdir, userval), os.path.join(inputdir, self.acemd.__dict__[field]), )) elif self.acemd.__dict__[field] is None: raise RuntimeError( "Could not locate any {f:} file in {i:}. " "Please set the {name:}.acemd.{f:} property to " "point to the {f:} file".format( f=field, i=inputdir, name=self.__class__.__name__)) def _amberFixes(self): # AMBER specific fixes if self.acemd.parameters.endswith("structure.prmtop"): self.acemd.parmfile = self.acemd.parameters self.acemd.parameters = None def defaultEquilRestraints(self, decay, mol=None): """Get the default equilibration restraints Parameters ---------- decay : str The restrains will get scaled to 0 over this much time. Returns ------- restraints : list A list of default protein restraints Examples -------- >>> md = Equilibration() >>> res = md.defaultEquilRestraints('20ns') """ caatoms = AtomRestraint("protein and name CA", 0, [(1, 0), (0, decay)]) notcaatoms = AtomRestraint("protein and noh and not name CA", 0, [(0.1, 0), (0, decay)]) nucleic = AtomRestraint("nucleic and backbone", 0, [(1, 0), (0, decay)]) nucleicside = AtomRestraint("nucleic and not backbone and noh", 0, [(0.1, 0), (0, decay)]) restraints = [caatoms, notcaatoms, nucleic, nucleicside] if mol is not None: restraints = [ r for r in restraints if mol.atomselect(r.selection).sum() ] return restraints def write(self, inputdir, outputdir): """Write the equilibration protocol Writes the equilibration protocol and files into a folder for execution using files inside the inputdir directory Parameters ---------- inputdir : str Path to a directory containing the files produced by a build process. outputdir : str Directory where to write the equilibration setup files. Examples -------- >>> md = Equilibration() >>> md.write('./build','./equil') """ from moleculekit.molecule import Molecule self._findFiles(inputdir) self._amberFixes() from htmd.units import convert numsteps = convert(self.timeunits, "timesteps", self.runtime, timestep=self.acemd.timestep) self.acemd.temperature = self.temperature self.acemd.thermostattemperature = self.temperature self.acemd.run = str(numsteps) pdbfile = os.path.join(inputdir, self.acemd.coordinates) inmol = Molecule(pdbfile) from htmd.builder.builder import detectCisPeptideBonds detectCisPeptideBonds(inmol) if np.any(inmol.atomselect("lipids")) and not self.useconstantratio: logger.warning( "Lipids detected in input structure. We highly recommend setting useconstantratio=True " "for membrane simulations.") if self.restraintsteps is None: constrsteps = int(numsteps / 2) else: constrsteps = int(self.restraintsteps) if self.restraints is not None: self.acemd.restraints = self.restraints else: self.acemd.restraints = self.defaultEquilRestraints(constrsteps, mol=inmol) if self.acemd.boxsize is None and self.acemd.extendedsystem is None: coords = inmol.get("coords", sel="water") if coords.size == 0: # It's a vacuum simulation coords = inmol.get("coords", sel="all") dim = np.max(coords, axis=0) - np.min(coords, axis=0) dim += 12.0 else: dim = np.max(coords, axis=0) - np.min(coords, axis=0) self.acemd.boxsize = "{} {} {}".format(dim[0], dim[1], dim[2]) if self.useconstantratio: self.acemd.useconstantratio = "on" self.acemd.setup(inputdir, outputdir, overwrite=True)
class Equilibration(ProtocolInterface): """ Equilibration protocol v2 Equilibration protocol for globular and membrane proteins It includes a flatbottom potential box to retrain a ligand for example within this box. Parameters ---------- runtime : float, default=0 Running time of the simulation. timeunits : str, default='steps' Units for time arguments. Can be 'steps', 'ns' etc. temperature : float, default=300 Temperature of the thermostat in Kelvin fb_k : float, default=0 Force constant of the flatbottom potential in kcal/mol/A^2. E.g. 5 fb_reference : str, default='none' Reference selection to use as dynamic center of the flatbottom box. fb_selection : str, default='none' Selection of atoms to apply the flatbottom potential fb_box : list, default=[0, 0, 0, 0, 0, 0] Position of the flatbottom box in term of the reference center given as [xmin, xmax, ymin, ymax, zmin, zmax] useconstantratio : bool, default=False For membrane protein simulations set it to true so that the barostat does not modify the xy aspect ratio. constraints : dict, default={'protein and name CA': 1, 'protein and noh and not name CA': 0.1} A dictionary of atomselections and values of the constraint to be applied (in kcal/mol/A^2). Atomselects must be mutually exclusive. nvtsteps : int, default=500 Number of initial steps to apply NVT in units of 4fs. constraintsteps : int, default=None Number of initial steps to apply constraints in units of 4fs. Defaults to half the simulation time. Example ------- >>> from htmd.protocols.equilibration_v2 import Equilibration >>> md = Equilibration() >>> md.runtime = 4 >>> md.timeunits = 'ns' >>> md.temperature = 300 >>> md.useconstantratio = True # only for membrane sims >>> # this is only needed for setting the flatbottom potential, otherwise remove it >>> md.fb_reference = 'protein and resid 293' >>> md.fb_selection = 'segname L and noh' >>> md.fb_box = [-25, 25, -25, 25, 43, 45] >>> md.fb_k = 5 >>> md.write('./build','./equil') """ def __init__(self, _version=_config['acemdversion']): super().__init__() self._version = _version self._arg( 'acemd', ':class:`Acemd2 <htmd.apps.acemd.Acemd>` or :class:`Acemd <htmd.mdengine.acemd.acemd.Acemd>`' ' object', 'Acemd class object', None, val.Object([Acemd2, Acemd])) self._arg('runtime', 'float', 'Running time of the simulation.', 25000, val.Number(float, '0POS')) self._arg('timeunits', 'str', 'Units for time arguments. Can be \'steps\', \'ns\' etc.', 'steps', val.String()) self._arg('temperature', 'float', 'Temperature of the thermostat in Kelvin', 300, val.Number(float, 'ANY')) self._arg( 'fb_k', 'float', 'Force constant of the flatbottom potential in kcal/mol/A^2. E.g. 5', 0, val.Number(float, 'ANY')) self._arg( 'fb_reference', 'str', 'Reference selection to use as dynamic center of the flatbottom box.', 'none', val.String()) self._arg('fb_selection', 'str', 'Selection of atoms to apply the flatbottom potential', 'none', val.String()) self._arg( 'fb_box', 'list', 'Position of the flatbottom box in term of the reference center given as ' '[xmin, xmax, ymin, ymax, zmin, zmax]', [0, 0, 0, 0, 0, 0], val.Number(float, 'ANY'), nargs=6) self._arg( 'constraints', 'dict', 'A dictionary of atomselections and values of the constraint to be ' 'applied (in kcal/mol/A^2). Atomselects must be mutually exclusive.', { 'protein and noh and not name CA': 0.1, 'protein and name CA': 1 }, val.Dictionary(key_type=str)) self._arg( 'useconstantratio', 'bool', 'For membrane protein simulations set it to true so that the barostat ' 'does not modify the xy aspect ratio.', False, val.Boolean()) self._arg('nvtsteps', 'int', 'Number of initial steps to apply NVT in units of 4fs.', 500, val.Number(int, 'ANY')) self._arg( 'constraintsteps', 'int', 'Number of initial steps to apply constraints in units of 4fs. Defaults ' 'to half the simulation time.', None, val.Number(int, 'ANY')) self._arg( 'restraints', 'list', 'A list of restraint objects. Only works with {}(_version=3),' 'see :class:`AtomRestraint <htmd.mdengine.acemd.acemd.AtomRestraint>` and' ':class:`GroupRestraint <htmd.mdengine.acemd.acemd.GroupRestraint>`' ')'.format(self.__class__.__name__), None, val.Object(_Restraint), nargs='*') if self._version == 2: self.acemd = Acemd2() self.acemd.coordinates = None self.acemd.structure = None self.acemd.parameters = None self.acemd.temperature = '$temperature' self.acemd.restart = 'on' self.acemd.restartfreq = '5000' self.acemd.outputname = 'output' self.acemd.xtcfile = 'output.xtc' self.acemd.xtcfreq = '25000' self.acemd.timestep = '4' self.acemd.rigidbonds = 'all' self.acemd.hydrogenscale = '4' self.acemd.switching = 'on' self.acemd.switchdist = '7.5' self.acemd.cutoff = '9' self.acemd.exclude = 'scaled1-4' self.acemd.scaling14 = '1.0' self.acemd.langevin = 'on' self.acemd.langevintemp = '$temperature' self.acemd.langevindamping = '1' self.acemd.pme = 'on' self.acemd.pmegridspacing = '1.0' self.acemd.fullelectfrequency = '2' self.acemd.energyfreq = '1000' self.acemd.constraints = 'on' self.acemd.consref = None self.acemd.constraintscaling = '1.0' self.acemd.berendsenpressure = 'on' self.acemd.berendsenpressuretarget = '1.01325' self.acemd.berendsenpressurerelaxationtime = '800' self.acemd.tclforces = 'on' self.acemd.minimize = '500' self.acemd.run = '$numsteps' self.acemd.TCL = (''' set numsteps {NUMSTEPS} set temperature {TEMPERATURE} set nvtsteps {NVTSTEPS} set constraintsteps {CONSTRAINTSTEPS} set fb_refindex {{ {REFINDEX} }} set fb_selindex {{ {SELINDEX} }} set fb_box {{ {BOX} }} set fb_K {KCONST} # ''', ''' proc flatbot1d {x xm xM fb_K} { set f 0 if {$x < $xm} { set f [expr $fb_K*[expr $xm-$x]] } if {$x > $xM} { set f [expr $fb_K*[expr $xM-$x]] } return $f } proc calcforces_init {} { global ref sel fb_refindex fb_selindex berendsenpressure off set ref [addgroup $fb_refindex] set sel [addgroup $fb_selindex] } proc calcforces {} { global ref sel numsteps fb_K fb_box nvtsteps constraintsteps loadcoords coords ##FLATBOTTOM if {$fb_K>0} { set r0 $coords($ref) set r1 $coords($sel) set dr [vecsub $r1 $r0] set fx [flatbot1d [lindex $dr 0] [lindex $fb_box 0] [lindex $fb_box 1] $fb_K] set fy [flatbot1d [lindex $dr 1] [lindex $fb_box 2] [lindex $fb_box 3] $fb_K] set fz [flatbot1d [lindex $dr 2] [lindex $fb_box 4] [lindex $fb_box 5] $fb_K] #print "dr: $dr fx: $fx fy: $fy fz: $fz" addforce $sel [list $fx $fy $fz] } ##EQUIL set step [ getstep ] if { $step > $nvtsteps } { berendsenpressure on } else { berendsenpressure off } if { $step > $constraintsteps } { constraintscaling 0 } else { constraintscaling [expr 1 - 0.95*$step/$constraintsteps] } } proc calcforces_endstep { } { } ''') elif self._version == 3: self.acemd = Acemd() self.acemd.coordinates = None self.acemd.structure = None self.acemd.parameters = None self.acemd.restart = 'on' self.acemd.trajectoryfile = 'output.xtc' self.acemd.trajectoryperiod = 25000 self.acemd.timestep = 4 self.acemd.switching = 'on' self.acemd.switchdistance = 7.5 self.acemd.cutoff = 9 self.acemd.thermostat = 'on' self.acemd.thermostatdamping = 1 self.acemd.pme = 'on' self.acemd.barostat = 'on' self.acemd.barostatpressure = 1.01325 self.acemd.minimize = 500 else: raise ValueError( '_version can not be {}. Choose either 2 or 3.'.format( self._version)) def _findFiles(self, inputdir): # Tries to find default files if the given don't exist defaults = { 'coordinates': ('structure.pdb', ), 'structure': ('structure.psf', 'structure.prmtop'), 'parameters': ('parameters', 'structure.prmtop') } for field in defaults: userval = self.acemd.__dict__[field] if userval is not None and not os.path.exists( os.path.join(inputdir, userval)): self.acemd.__dict__[field] = None if self.acemd.__dict__[field] is None: for val in defaults[field]: if os.path.exists(os.path.join(inputdir, val)): self.acemd.__dict__[field] = val break if userval is not None and self.acemd.__dict__[ field] is not None and self.acemd.__dict__[ field] != userval: logger.warning( 'Could not locate structure file {}. Using {} instead.'. format(os.path.join(inputdir, userval), os.path.join(inputdir, self.acemd.__dict__[field]))) elif self.acemd.__dict__[field] is None: raise RuntimeError( 'Could not locate any {f:} file in {i:}. ' 'Please set the {name:}.acemd.{f:} property to ' 'point to the {f:} file'.format( f=field, i=inputdir, name=self.__class__.__name__)) if self._version == 2: if self.acemd.consref is None: self.acemd.consref = self.acemd.coordinates def _amberFixes(self): # AMBER specific fixes if self.acemd.parameters.endswith('structure.prmtop'): self.acemd.parmfile = self.acemd.parameters self.acemd.parameters = None if self._version == 2: self.acemd.scaling14 = '0.8333333' self.acemd.amber = 'on' def _constraints2restraints(self, constrsteps): restraints = list() for constr in sorted(self.constraints): restraints.append( AtomRestraint(constr, 0, [(self.constraints[constr], 0), (0, constrsteps)])) return restraints def _fb_potential2restraints(self, inputdir): from moleculekit.molecule import Molecule restraints = list() fb_box = np.array(self.fb_box) # convert fb_box to width width = list( np.concatenate( np.diff(np.array([fb_box[::2], fb_box[1::2]]), axis=0))) # If fb_box is not symmetrical if not np.all(fb_box[::2] == -fb_box[1::2]): # convert fb_box and fb_reference to fbcentre and width mol = Molecule(os.path.join(inputdir, self.acemd.structure)) mol.read(os.path.join(inputdir, self.acemd.coordinates)) fb_refcentre = mol.get( 'coords', sel=self.fb_reference).mean(axis=0).squeeze() fbcentre = list( np.around( np.mean(np.array([fb_box[::2], fb_box[1::2]]), axis=0) + fb_refcentre, 3)) restraints.append( GroupRestraint(self.fb_selection, width, [(self.fb_k, 0)], fbcentre=fbcentre)) else: restraints.append( GroupRestraint(self.fb_selection, width, [(self.fb_k, 0)], fbcentresel=self.fb_reference)) return restraints def write(self, inputdir, outputdir): """ Write the equilibration protocol Writes the equilibration protocol and files into a folder for execution using files inside the inputdir directory Parameters ---------- inputdir : str Path to a directory containing the files produced by a build process. outputdir : str Directory where to write the equilibration setup files. Examples -------- >>> md = Equilibration() >>> md.write('./build','./equil') """ from moleculekit.molecule import Molecule # Do version consistency check if (self._version == 2 and not isinstance(self.acemd, Acemd2)) and \ (self._version == 3 and not isinstance(self.acemd, Acemd)): raise RuntimeError( 'Acemd object version ({}) inconsistent with protocol version at instantiation ' '({})'.format(type(self.acemd), self._version)) self._findFiles(inputdir) self._amberFixes() from htmd.units import convert numsteps = convert(self.timeunits, 'timesteps', self.runtime, timestep=self.acemd.timestep) if self._version == 3: self.acemd.temperature = self.temperature self.acemd.thermostattemperature = self.temperature self.acemd.run = str(numsteps) pdbfile = os.path.join(inputdir, self.acemd.coordinates) inmol = Molecule(pdbfile) from htmd.builder.builder import detectCisPeptideBonds detectCisPeptideBonds(inmol) if np.any(inmol.atomselect('lipids')) and not self.useconstantratio: logger.warning( 'Lipids detected in input structure. We highly recommend setting useconstantratio=True ' 'for membrane simulations.') if self.constraintsteps is None: constrsteps = int(numsteps / 2) else: constrsteps = int(self.constraintsteps) if self._version == 2: if self.restraints: raise RuntimeWarning( 'restraints are only available on {}(_version=3)'.format( self.__class__.__name__)) if isinstance(self.acemd.TCL, tuple): tcl = list(self.acemd.TCL) tcl[0] = tcl[0].format( NUMSTEPS=numsteps, KCONST=self.fb_k, REFINDEX=' '.join( map(str, inmol.get('index', self.fb_reference))), SELINDEX=' '.join( map(str, inmol.get('index', self.fb_selection))), BOX=' '.join(map(str, self.fb_box)), NVTSTEPS=self.nvtsteps, CONSTRAINTSTEPS=constrsteps, TEMPERATURE=self.temperature) self.acemd.TCL = tcl[0] + tcl[1] else: logger.warning('{} default TCL was already formatted.'.format( self.__class__.__name__)) elif self._version == 3: if self.restraints is not None: logger.info( 'Using user-provided restraints and ignoring constraints and fb_potential' ) self.acemd.restraints = self.restraints else: logger.warning( 'Converting constraints and fb_potential to restraints. This is a convenience ' 'functional conversion. We recommend start using restraints with ' '{}(_version=3)'.format(self.__class__.__name__)) restraints = list() # convert constraints to restraints and add them if self.constraints is not None: restraints += self._constraints2restraints(constrsteps) # convert fb_potential to restraints and add them if self.fb_k > 0: restraints += self._fb_potential2restraints(inputdir) self.acemd.restraints = restraints if ((self._version == 2) and self.acemd.celldimension is None and self.acemd.extendedsystem is None) or \ ((self._version == 3) and self.acemd.boxsize is None and self.acemd.extendedsystem is None): coords = inmol.get('coords', sel='water') if coords.size == 0: # It's a vacuum simulation coords = inmol.get('coords', sel='all') dim = np.max(coords, axis=0) - np.min(coords, axis=0) dim += 12. else: dim = np.max(coords, axis=0) - np.min(coords, axis=0) if self._version == 2: self.acemd.celldimension = '{} {} {}'.format( dim[0], dim[1], dim[2]) else: self.acemd.boxsize = '{} {} {}'.format(dim[0], dim[1], dim[2]) if self.useconstantratio: self.acemd.useconstantratio = 'on' self.acemd.setup(inputdir, outputdir, overwrite=True) if self._version == 2: # Adding constraints by writing them to the consref file inconsreffile = os.path.join(inputdir, self.acemd.consref) consrefmol = Molecule(inconsreffile) consrefmol.set('occupancy', 0) consrefmol.set('beta', 0) if len(self.constraints) == 0: raise RuntimeError( 'You have not defined any constraints for the {} (' 'constraints={{}}).'.format(self.__class__.__name__)) else: for sel in self.constraints: consrefmol.set('beta', self.constraints[sel], sel) outconsreffile = os.path.join(outputdir, self.acemd.consref) consrefmol.write(outconsreffile) def addConstraint(self, atomselect, factor=1): """ Convenience function for adding a new constraint to existing constraints. Parameters ---------- atomselect : str Atom selection of atoms we want to constrain factor : float The scaling factor of the constraints applied to the atoms Example ------- >>> eq.addConstraint('chain X', 0.3) """ self.constraints[atomselect] = factor