class LogisticExciteFunctionTest(unittest.TestCase):


  def setUp(self):
    self.fcn = LogisticExciteFunction(xMidpoint=5, minValue=10, maxValue=20, steepness=1)


  def testExcite(self):

    inputs = numpy.array([0, 2, 4, 6, 8, 10])
    original = numpy.zeros(inputs.shape)
    afterExcitation = numpy.copy(original)
    for i in xrange(len(original)):
      afterExcitation[i] = self.fcn.excite(original[i], inputs[i])

    for i in xrange(len(original)-1):
      self.assertGreater(afterExcitation[i+1], original[i])


  def testExciteZeroInputs(self):
    """
    Test saturation with strong inputs
    """
    activation = numpy.array([0, 2, 4, 6, 8])
    original = numpy.copy(activation)
    inputs = 0

    self.fcn.excite(activation, inputs)

    for i in xrange(len(original)):
      self.assertAlmostEqual(activation[i], original[i]+self.fcn._minValue)


  def testExciteFullActivation(self):
    """
    Test saturation with strong inputs
    """
    activation = numpy.array([0, 2, 4, 6, 8])
    expected = numpy.copy(activation) + self.fcn._maxValue
    inputs = 1000000
    activation = self.fcn.excite(activation, inputs)
    print "activation: ", activation
    npt.assert_allclose(activation, expected)
Esempio n. 2
0
  def _initFunctions(self):
      # initialize excite/decay functions
      if self._exciteFunctionType == 'Fixed':
        self._exciteFunction = FixedExciteFunction()
      elif self._exciteFunctionType == 'Logistic':
        self._exciteFunction = LogisticExciteFunction()
      elif self._exciteFunctionType == 'Linear':
        self._exciteFunction = LinearExciteFunction()
      else:
        raise NotImplementedError('unknown excite function type'+exciteFunctionType)

      if self._decayFunctionType == 'NoDecay':
        self._decayFunction = NoDecayFunction()
      elif self._decayFunctionType == 'Exponential':
        self._decayFunction = ExponentialDecayFunction(self._decayTimeConst)
      elif self._decayFunctionType == 'Linear':
        self._decayFunction = LinearDecayFunction(self._decayLinearConst)
      else:
        raise NotImplementedError('unknown decay function type'+decayFunctionType)
    def __init__(
            self,
            # union_temporal_pooler.py parameters
            activeOverlapWeight=1.0,
            predictedActiveOverlapWeight=0.0,
            maxUnionActivity=0.20,
            exciteFunctionType='Fixed',
            decayFunctionType='NoDecay',
            decayTimeConst=20.0,
            synPermPredActiveInc=0.0,
            synPermPreviousPredActiveInc=0.0,
            historyLength=0,
            minHistory=0,
            **kwargs):
        """
    Please see spatial_pooler.py in NuPIC for super class parameter
    descriptions.

    Class-specific parameters:
    -------------------------------------

    @param activeOverlapWeight: A multiplicative weight applied to
        the overlap between connected synapses and active-cell input

    @param predictedActiveOverlapWeight: A multiplicative weight applied to
        the overlap between connected synapses and predicted-active-cell input

    @param fixedPoolingActivationBurst: A Boolean, which, if True, has the
        Union Temporal Pooler grant a fixed amount of pooling activation to
        columns whenever they win the inhibition step. If False, columns'
        pooling activation is calculated based on their current overlap.

    @param exciteFunction: If fixedPoolingActivationBurst is False,
        this specifies the ExciteFunctionBase used to excite pooling
        activation.

    @param decayFunction: Specifies the DecayFunctionBase used to decay pooling
        activation.

    @param maxUnionActivity: Maximum sparsity of the union SDR

    @param decayTimeConst Time constant for the decay function

    @param minHistory don't perform union (output all zeros) until buffer
    length >= minHistory
    """

        super(UnionTemporalPooler, self).__init__(**kwargs)

        self._activeOverlapWeight = activeOverlapWeight
        self._predictedActiveOverlapWeight = predictedActiveOverlapWeight
        self._maxUnionActivity = maxUnionActivity

        self._exciteFunctionType = exciteFunctionType
        self._decayFunctionType = decayFunctionType
        self._synPermPredActiveInc = synPermPredActiveInc
        self._synPermPreviousPredActiveInc = synPermPreviousPredActiveInc

        self._historyLength = historyLength
        self._minHistory = minHistory

        # initialize excite/decay functions
        if exciteFunctionType == 'Fixed':
            self._exciteFunction = FixedExciteFunction()
        elif exciteFunctionType == 'Logistic':
            self._exciteFunction = LogisticExciteFunction()
        else:
            raise NotImplementedError('unknown excite function type' +
                                      exciteFunctionType)

        if decayFunctionType == 'NoDecay':
            self._decayFunction = NoDecayFunction()
        elif decayFunctionType == 'Exponential':
            self._decayFunction = ExponentialDecayFunction(decayTimeConst)
        else:
            raise NotImplementedError('unknown decay function type' +
                                      decayFunctionType)

        # The maximum number of cells allowed in a single union SDR
        self._maxUnionCells = int(self.getNumColumns() *
                                  self._maxUnionActivity)

        # Scalar activation of potential union SDR cells; most active cells become
        # the union SDR
        self._poolingActivation = numpy.zeros(self.getNumColumns(),
                                              dtype=REAL_DTYPE)

        # include a small amount of tie-breaker when sorting pooling activation
        numpy.random.seed(1)
        self._poolingActivation_tieBreaker = numpy.random.randn(
            self.getNumColumns()) * _TIE_BREAKER_FACTOR

        # time since last pooling activation increment
        # initialized to be a large number
        self._poolingTimer = numpy.ones(self.getNumColumns(),
                                        dtype=REAL_DTYPE) * 1000

        # pooling activation level after the latest update, used for sigmoid decay function
        self._poolingActivationInitLevel = numpy.zeros(self.getNumColumns(),
                                                       dtype=REAL_DTYPE)

        # Current union SDR; the output of the union pooler algorithm
        self._unionSDR = numpy.array([], dtype=UINT_DTYPE)

        # Indices of active cells from spatial pooler
        self._activeCells = numpy.array([], dtype=UINT_DTYPE)

        # lowest possible pooling activation level
        self._poolingActivationlowerBound = 0.1

        self._preActiveInput = numpy.zeros(self.getNumInputs(),
                                           dtype=REAL_DTYPE)
        # predicted inputs from the last n steps
        self._prePredictedActiveInput = numpy.zeros(
            (self.getNumInputs(), self._historyLength), dtype=REAL_DTYPE)
class UnionTemporalPooler(SpatialPooler):
    """
  Experimental Union Temporal Pooler Python implementation. The Union Temporal
  Pooler builds a "union SDR" of the most recent sets of active columns. It is
  driven by active-cell input and, more strongly, by predictive-active cell
  input. The latter is more likely to produce active columns. Such winning
  columns will also tend to persist longer in the union SDR.
  """
    def __init__(
            self,
            # union_temporal_pooler.py parameters
            activeOverlapWeight=1.0,
            predictedActiveOverlapWeight=0.0,
            maxUnionActivity=0.20,
            exciteFunctionType='Fixed',
            decayFunctionType='NoDecay',
            decayTimeConst=20.0,
            synPermPredActiveInc=0.0,
            synPermPreviousPredActiveInc=0.0,
            historyLength=0,
            minHistory=0,
            **kwargs):
        """
    Please see spatial_pooler.py in NuPIC for super class parameter
    descriptions.

    Class-specific parameters:
    -------------------------------------

    @param activeOverlapWeight: A multiplicative weight applied to
        the overlap between connected synapses and active-cell input

    @param predictedActiveOverlapWeight: A multiplicative weight applied to
        the overlap between connected synapses and predicted-active-cell input

    @param fixedPoolingActivationBurst: A Boolean, which, if True, has the
        Union Temporal Pooler grant a fixed amount of pooling activation to
        columns whenever they win the inhibition step. If False, columns'
        pooling activation is calculated based on their current overlap.

    @param exciteFunction: If fixedPoolingActivationBurst is False,
        this specifies the ExciteFunctionBase used to excite pooling
        activation.

    @param decayFunction: Specifies the DecayFunctionBase used to decay pooling
        activation.

    @param maxUnionActivity: Maximum sparsity of the union SDR

    @param decayTimeConst Time constant for the decay function

    @param minHistory don't perform union (output all zeros) until buffer
    length >= minHistory
    """

        super(UnionTemporalPooler, self).__init__(**kwargs)

        self._activeOverlapWeight = activeOverlapWeight
        self._predictedActiveOverlapWeight = predictedActiveOverlapWeight
        self._maxUnionActivity = maxUnionActivity

        self._exciteFunctionType = exciteFunctionType
        self._decayFunctionType = decayFunctionType
        self._synPermPredActiveInc = synPermPredActiveInc
        self._synPermPreviousPredActiveInc = synPermPreviousPredActiveInc

        self._historyLength = historyLength
        self._minHistory = minHistory

        # initialize excite/decay functions
        if exciteFunctionType == 'Fixed':
            self._exciteFunction = FixedExciteFunction()
        elif exciteFunctionType == 'Logistic':
            self._exciteFunction = LogisticExciteFunction()
        else:
            raise NotImplementedError('unknown excite function type' +
                                      exciteFunctionType)

        if decayFunctionType == 'NoDecay':
            self._decayFunction = NoDecayFunction()
        elif decayFunctionType == 'Exponential':
            self._decayFunction = ExponentialDecayFunction(decayTimeConst)
        else:
            raise NotImplementedError('unknown decay function type' +
                                      decayFunctionType)

        # The maximum number of cells allowed in a single union SDR
        self._maxUnionCells = int(self.getNumColumns() *
                                  self._maxUnionActivity)

        # Scalar activation of potential union SDR cells; most active cells become
        # the union SDR
        self._poolingActivation = numpy.zeros(self.getNumColumns(),
                                              dtype=REAL_DTYPE)

        # include a small amount of tie-breaker when sorting pooling activation
        numpy.random.seed(1)
        self._poolingActivation_tieBreaker = numpy.random.randn(
            self.getNumColumns()) * _TIE_BREAKER_FACTOR

        # time since last pooling activation increment
        # initialized to be a large number
        self._poolingTimer = numpy.ones(self.getNumColumns(),
                                        dtype=REAL_DTYPE) * 1000

        # pooling activation level after the latest update, used for sigmoid decay function
        self._poolingActivationInitLevel = numpy.zeros(self.getNumColumns(),
                                                       dtype=REAL_DTYPE)

        # Current union SDR; the output of the union pooler algorithm
        self._unionSDR = numpy.array([], dtype=UINT_DTYPE)

        # Indices of active cells from spatial pooler
        self._activeCells = numpy.array([], dtype=UINT_DTYPE)

        # lowest possible pooling activation level
        self._poolingActivationlowerBound = 0.1

        self._preActiveInput = numpy.zeros(self.getNumInputs(),
                                           dtype=REAL_DTYPE)
        # predicted inputs from the last n steps
        self._prePredictedActiveInput = numpy.zeros(
            (self.getNumInputs(), self._historyLength), dtype=REAL_DTYPE)

    def reset(self):
        """
    Reset the state of the Union Temporal Pooler.
    """

        # Reset Union Temporal Pooler fields
        self._poolingActivation = numpy.zeros(self.getNumColumns(),
                                              dtype=REAL_DTYPE)
        self._unionSDR = numpy.array([], dtype=UINT_DTYPE)
        self._poolingTimer = numpy.ones(self.getNumColumns(),
                                        dtype=REAL_DTYPE) * 1000
        self._poolingActivationInitLevel = numpy.zeros(self.getNumColumns(),
                                                       dtype=REAL_DTYPE)
        self._preActiveInput = numpy.zeros(self.getNumInputs(),
                                           dtype=REAL_DTYPE)
        self._prePredictedActiveInput = numpy.zeros(
            (self.getNumInputs(), self._historyLength), dtype=REAL_DTYPE)

        # Reset Spatial Pooler fields
        self.setOverlapDutyCycles(
            numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE))
        self.setActiveDutyCycles(
            numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE))
        self.setMinOverlapDutyCycles(
            numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE))
        self.setMinActiveDutyCycles(
            numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE))
        self.setBoostFactors(numpy.ones(self.getNumColumns(),
                                        dtype=REAL_DTYPE))

    def compute(self, activeInput, predictedActiveInput, learn):
        """
    Computes one cycle of the Union Temporal Pooler algorithm.
    @param activeInput            (numpy array) A numpy array of 0's and 1's that comprises the input to the union pooler
    @param predictedActiveInput   (numpy array) A numpy array of 0's and 1's that comprises the correctly predicted input to the union pooler
    @param learn                  (boolen)      A boolen value indicating whether learning should be performed
    """
        assert numpy.size(activeInput) == self.getNumInputs()
        assert numpy.size(predictedActiveInput) == self.getNumInputs()
        self._updateBookeepingVars(learn)

        # Compute proximal dendrite overlaps with active and active-predicted inputs
        overlapsActive = self._calculateOverlap(activeInput)
        overlapsPredictedActive = self._calculateOverlap(predictedActiveInput)
        totalOverlap = (overlapsActive * self._activeOverlapWeight +
                        overlapsPredictedActive *
                        self._predictedActiveOverlapWeight).astype(REAL_DTYPE)

        if learn:
            boostFactors = numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE)
            self.getBoostFactors(boostFactors)
            boostedOverlaps = boostFactors * totalOverlap
        else:
            boostedOverlaps = totalOverlap

        activeCells = self._inhibitColumns(boostedOverlaps)
        self._activeCells = activeCells

        # Decrement pooling activation of all cells
        self._decayPoolingActivation()

        # Update the poolingActivation of current active Union Temporal Pooler cells
        self._addToPoolingActivation(activeCells, overlapsPredictedActive)

        # update union SDR
        self._getMostActiveCells()

        if learn:
            # adapt permanence of connections from predicted active inputs to newly active cell
            # This step is the spatial pooler learning rule, applied only to the predictedActiveInput
            # Todo: should we also include unpredicted active input in this step?
            self._adaptSynapses(predictedActiveInput, activeCells,
                                self.getSynPermActiveInc(),
                                self.getSynPermInactiveDec())

            # Increase permanence of connections from predicted active inputs to cells in the union SDR
            # This is Hebbian learning applied to the current time step
            self._adaptSynapses(predictedActiveInput, self._unionSDR,
                                self._synPermPredActiveInc, 0.0)

            # adapt permenence of connections from previously predicted inputs to newly active cells
            # This is a reinforcement learning rule that considers previous input to the current cell
            for i in xrange(self._historyLength):
                self._adaptSynapses(self._prePredictedActiveInput[:, i],
                                    activeCells,
                                    self._synPermPreviousPredActiveInc, 0.0)

            # Homeostasis learning inherited from the spatial pooler
            self._updateDutyCycles(totalOverlap.astype(UINT_DTYPE),
                                   activeCells)
            self._bumpUpWeakColumns()
            self._updateBoostFactors()
            if self._isUpdateRound():
                self._updateInhibitionRadius()
                self._updateMinDutyCycles()

        # save inputs from the previous time step
        self._preActiveInput = copy.copy(activeInput)
        self._prePredictedActiveInput = numpy.roll(
            self._prePredictedActiveInput, 1, 1)
        if self._historyLength > 0:
            self._prePredictedActiveInput[:, 0] = predictedActiveInput

        return self._unionSDR

    def _decayPoolingActivation(self):
        """
    Decrements pooling activation of all cells
    """
        if self._decayFunctionType == 'NoDecay':
            self._poolingActivation = self._decayFunction.decay(
                self._poolingActivation)
        elif self._decayFunctionType == 'Exponential':
            self._poolingActivation = self._decayFunction.decay(\
                                      self._poolingActivationInitLevel, self._poolingTimer)

        return self._poolingActivation

    def _addToPoolingActivation(self, activeCells, overlaps):
        """
    Adds overlaps from specified active cells to cells' pooling
    activation.
    @param activeCells: Indices of those cells winning the inhibition step
    @param overlaps: A current set of overlap values for each cell
    @return current pooling activation
    """
        self._poolingActivation[activeCells] = self._exciteFunction.excite(
            self._poolingActivation[activeCells], overlaps[activeCells])

        # increase pooling timers for all cells
        self._poolingTimer[self._poolingTimer >= 0] += 1

        # reset pooling timer for active cells
        self._poolingTimer[activeCells] = 0
        self._poolingActivationInitLevel[
            activeCells] = self._poolingActivation[activeCells]

        return self._poolingActivation

    def _getMostActiveCells(self):
        """
    Gets the most active cells in the Union SDR having at least non-zero
    activation in sorted order.
    @return: a list of cell indices
    """
        poolingActivation = self._poolingActivation
        nonZeroCells = numpy.argwhere(poolingActivation > 0)[:, 0]

        # include a tie-breaker before sorting
        poolingActivationSubset = poolingActivation[nonZeroCells] + \
                                  self._poolingActivation_tieBreaker[nonZeroCells]
        potentialUnionSDR = nonZeroCells[numpy.argsort(poolingActivationSubset)
                                         [::-1]]

        topCells = potentialUnionSDR[0:self._maxUnionCells]

        if max(self._poolingTimer) > self._minHistory:
            self._unionSDR = numpy.sort(topCells).astype(UINT_DTYPE)
        else:
            self._unionSDR = []

        return self._unionSDR

    # overide
    def _adaptSynapses(self, inputVector, activeColumns, synPermActiveInc,
                       synPermInactiveDec):
        """
    The primary method in charge of learning. Adapts the permanence values of
    the synapses based on the input vector, and the chosen columns after
    inhibition round. Permanence values are increased for synapses connected to
    input bits that are turned on, and decreased for synapses connected to
    inputs bits that are turned off.

    Parameters:
    ----------------------------
    @param inputVector:
                    A numpy array of 0's and 1's that comprises the input to
                    the spatial pooler. There exists an entry in the array
                    for every input bit.
    @param activeColumns:
                    An array containing the indices of the columns that
                    survived inhibition.

    @param synPermActiveInc:
                    Permanence increment for active inputs
    @param synPermInactiveDec:
                    Permanence decrement for inactive inputs
    """
        inputIndices = numpy.where(inputVector > 0)[0]
        permChanges = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
        permChanges.fill(-1 * synPermInactiveDec)
        permChanges[inputIndices] = synPermActiveInc
        perm = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
        potential = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
        for i in activeColumns:
            self.getPermanence(i, perm)
            self.getPotential(i, potential)
            maskPotential = numpy.where(potential > 0)[0]
            perm[maskPotential] += permChanges[maskPotential]
            self._updatePermanencesForColumn(perm, i, raisePerm=False)

    def getUnionSDR(self):
        return self._unionSDR
  def __init__(self,
               # union_temporal_pooler.py parameters
               activeOverlapWeight=1.0,
               predictedActiveOverlapWeight=0.0,
               maxUnionActivity=0.20,
               exciteFunctionType='Fixed',
               decayFunctionType='NoDecay',
               decayTimeConst=20.0,
               synPermPredActiveInc=0.0,
               synPermPreviousPredActiveInc=0.0,
               historyLength=0,
               minHistory=0,
               **kwargs):
    """
    Please see spatial_pooler.py in NuPIC for super class parameter
    descriptions.

    Class-specific parameters:
    -------------------------------------

    @param activeOverlapWeight: A multiplicative weight applied to
        the overlap between connected synapses and active-cell input

    @param predictedActiveOverlapWeight: A multiplicative weight applied to
        the overlap between connected synapses and predicted-active-cell input

    @param fixedPoolingActivationBurst: A Boolean, which, if True, has the
        Union Temporal Pooler grant a fixed amount of pooling activation to
        columns whenever they win the inhibition step. If False, columns'
        pooling activation is calculated based on their current overlap.

    @param exciteFunction: If fixedPoolingActivationBurst is False,
        this specifies the ExciteFunctionBase used to excite pooling
        activation.

    @param decayFunction: Specifies the DecayFunctionBase used to decay pooling
        activation.

    @param maxUnionActivity: Maximum sparsity of the union SDR

    @param decayTimeConst Time constant for the decay function

    @param minHistory don't perform union (output all zeros) until buffer
    length >= minHistory
    """

    super(UnionTemporalPooler, self).__init__(**kwargs)

    self._activeOverlapWeight = activeOverlapWeight
    self._predictedActiveOverlapWeight = predictedActiveOverlapWeight
    self._maxUnionActivity = maxUnionActivity

    self._exciteFunctionType = exciteFunctionType
    self._decayFunctionType = decayFunctionType
    self._synPermPredActiveInc = synPermPredActiveInc
    self._synPermPreviousPredActiveInc = synPermPreviousPredActiveInc

    self._historyLength = historyLength
    self._minHistory = minHistory

    # initialize excite/decay functions
    if exciteFunctionType == 'Fixed':
      self._exciteFunction = FixedExciteFunction()
    elif exciteFunctionType == 'Logistic':
      self._exciteFunction = LogisticExciteFunction()
    else:
      raise NotImplementedError('unknown excite function type'+exciteFunctionType)

    if decayFunctionType == 'NoDecay':
      self._decayFunction = NoDecayFunction()
    elif decayFunctionType == 'Exponential':
      self._decayFunction = ExponentialDecayFunction(decayTimeConst)
    else:
      raise NotImplementedError('unknown decay function type'+decayFunctionType)


    # The maximum number of cells allowed in a single union SDR
    self._maxUnionCells = int(self.getNumColumns() * self._maxUnionActivity)

    # Scalar activation of potential union SDR cells; most active cells become
    # the union SDR
    self._poolingActivation = numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE)

    # include a small amount of tie-breaker when sorting pooling activation
    numpy.random.seed(1)
    self._poolingActivation_tieBreaker = numpy.random.randn(self.getNumColumns()) * _TIE_BREAKER_FACTOR

    # time since last pooling activation increment
    # initialized to be a large number
    self._poolingTimer = numpy.ones(self.getNumColumns(), dtype=REAL_DTYPE) * 1000

    # pooling activation level after the latest update, used for sigmoid decay function
    self._poolingActivationInitLevel = numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE)

    # Current union SDR; the output of the union pooler algorithm
    self._unionSDR = numpy.array([], dtype=UINT_DTYPE)

    # Indices of active cells from spatial pooler
    self._activeCells = numpy.array([], dtype=UINT_DTYPE)

    # lowest possible pooling activation level
    self._poolingActivationlowerBound = 0.1

    self._preActiveInput = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
    # predicted inputs from the last n steps
    self._prePredictedActiveInput = numpy.zeros((self.getNumInputs(), self._historyLength), dtype=REAL_DTYPE)
class UnionTemporalPooler(SpatialPooler):
  """
  Experimental Union Temporal Pooler Python implementation. The Union Temporal
  Pooler builds a "union SDR" of the most recent sets of active columns. It is
  driven by active-cell input and, more strongly, by predictive-active cell
  input. The latter is more likely to produce active columns. Such winning
  columns will also tend to persist longer in the union SDR.
  """


  def __init__(self,
               # union_temporal_pooler.py parameters
               activeOverlapWeight=1.0,
               predictedActiveOverlapWeight=0.0,
               maxUnionActivity=0.20,
               exciteFunctionType='Fixed',
               decayFunctionType='NoDecay',
               decayTimeConst=20.0,
               synPermPredActiveInc=0.0,
               synPermPreviousPredActiveInc=0.0,
               historyLength=0,
               minHistory=0,
               **kwargs):
    """
    Please see spatial_pooler.py in NuPIC for super class parameter
    descriptions.

    Class-specific parameters:
    -------------------------------------

    @param activeOverlapWeight: A multiplicative weight applied to
        the overlap between connected synapses and active-cell input

    @param predictedActiveOverlapWeight: A multiplicative weight applied to
        the overlap between connected synapses and predicted-active-cell input

    @param fixedPoolingActivationBurst: A Boolean, which, if True, has the
        Union Temporal Pooler grant a fixed amount of pooling activation to
        columns whenever they win the inhibition step. If False, columns'
        pooling activation is calculated based on their current overlap.

    @param exciteFunction: If fixedPoolingActivationBurst is False,
        this specifies the ExciteFunctionBase used to excite pooling
        activation.

    @param decayFunction: Specifies the DecayFunctionBase used to decay pooling
        activation.

    @param maxUnionActivity: Maximum sparsity of the union SDR

    @param decayTimeConst Time constant for the decay function

    @param minHistory don't perform union (output all zeros) until buffer
    length >= minHistory
    """

    super(UnionTemporalPooler, self).__init__(**kwargs)

    self._activeOverlapWeight = activeOverlapWeight
    self._predictedActiveOverlapWeight = predictedActiveOverlapWeight
    self._maxUnionActivity = maxUnionActivity

    self._exciteFunctionType = exciteFunctionType
    self._decayFunctionType = decayFunctionType
    self._synPermPredActiveInc = synPermPredActiveInc
    self._synPermPreviousPredActiveInc = synPermPreviousPredActiveInc

    self._historyLength = historyLength
    self._minHistory = minHistory

    # initialize excite/decay functions
    if exciteFunctionType == 'Fixed':
      self._exciteFunction = FixedExciteFunction()
    elif exciteFunctionType == 'Logistic':
      self._exciteFunction = LogisticExciteFunction()
    else:
      raise NotImplementedError('unknown excite function type'+exciteFunctionType)

    if decayFunctionType == 'NoDecay':
      self._decayFunction = NoDecayFunction()
    elif decayFunctionType == 'Exponential':
      self._decayFunction = ExponentialDecayFunction(decayTimeConst)
    else:
      raise NotImplementedError('unknown decay function type'+decayFunctionType)


    # The maximum number of cells allowed in a single union SDR
    self._maxUnionCells = int(self.getNumColumns() * self._maxUnionActivity)

    # Scalar activation of potential union SDR cells; most active cells become
    # the union SDR
    self._poolingActivation = numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE)

    # include a small amount of tie-breaker when sorting pooling activation
    numpy.random.seed(1)
    self._poolingActivation_tieBreaker = numpy.random.randn(self.getNumColumns()) * _TIE_BREAKER_FACTOR

    # time since last pooling activation increment
    # initialized to be a large number
    self._poolingTimer = numpy.ones(self.getNumColumns(), dtype=REAL_DTYPE) * 1000

    # pooling activation level after the latest update, used for sigmoid decay function
    self._poolingActivationInitLevel = numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE)

    # Current union SDR; the output of the union pooler algorithm
    self._unionSDR = numpy.array([], dtype=UINT_DTYPE)

    # Indices of active cells from spatial pooler
    self._activeCells = numpy.array([], dtype=UINT_DTYPE)

    # lowest possible pooling activation level
    self._poolingActivationlowerBound = 0.1

    self._preActiveInput = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
    # predicted inputs from the last n steps
    self._prePredictedActiveInput = numpy.zeros((self.getNumInputs(), self._historyLength), dtype=REAL_DTYPE)


  def reset(self):
    """
    Reset the state of the Union Temporal Pooler.
    """

    # Reset Union Temporal Pooler fields
    self._poolingActivation = numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE)
    self._unionSDR = numpy.array([], dtype=UINT_DTYPE)
    self._poolingTimer = numpy.ones(self.getNumColumns(), dtype=REAL_DTYPE) * 1000
    self._poolingActivationInitLevel = numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE)
    self._preActiveInput = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
    self._prePredictedActiveInput = numpy.zeros((self.getNumInputs(), self._historyLength), dtype=REAL_DTYPE)

    # Reset Spatial Pooler fields
    self.setOverlapDutyCycles(numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE))
    self.setActiveDutyCycles(numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE))
    self.setMinOverlapDutyCycles(numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE))
    self.setBoostFactors(numpy.ones(self.getNumColumns(), dtype=REAL_DTYPE))


  def compute(self, activeInput, predictedActiveInput, learn):
    """
    Computes one cycle of the Union Temporal Pooler algorithm.
    @param activeInput            (numpy array) A numpy array of 0's and 1's that comprises the input to the union pooler
    @param predictedActiveInput   (numpy array) A numpy array of 0's and 1's that comprises the correctly predicted input to the union pooler
    @param learn                  (boolen)      A boolen value indicating whether learning should be performed
    """
    assert numpy.size(activeInput) == self.getNumInputs()
    assert numpy.size(predictedActiveInput) == self.getNumInputs()
    self._updateBookeepingVars(learn)

    # Compute proximal dendrite overlaps with active and active-predicted inputs
    overlapsActive = self._calculateOverlap(activeInput)
    overlapsPredictedActive = self._calculateOverlap(predictedActiveInput)
    totalOverlap = (overlapsActive * self._activeOverlapWeight +
                    overlapsPredictedActive *
                    self._predictedActiveOverlapWeight).astype(REAL_DTYPE)

    if learn:
      boostFactors = numpy.zeros(self.getNumColumns(), dtype=REAL_DTYPE)
      self.getBoostFactors(boostFactors)
      boostedOverlaps = boostFactors * totalOverlap
    else:
      boostedOverlaps = totalOverlap

    activeCells = self._inhibitColumns(boostedOverlaps)
    self._activeCells = activeCells

    # Decrement pooling activation of all cells
    self._decayPoolingActivation()

    # Update the poolingActivation of current active Union Temporal Pooler cells
    self._addToPoolingActivation(activeCells, overlapsPredictedActive)

    # update union SDR
    self._getMostActiveCells()

    if learn:
      # adapt permanence of connections from predicted active inputs to newly active cell
      # This step is the spatial pooler learning rule, applied only to the predictedActiveInput
      # Todo: should we also include unpredicted active input in this step?
      self._adaptSynapses(predictedActiveInput, activeCells, self.getSynPermActiveInc(), self.getSynPermInactiveDec())

      # Increase permanence of connections from predicted active inputs to cells in the union SDR
      # This is Hebbian learning applied to the current time step
      self._adaptSynapses(predictedActiveInput, self._unionSDR, self._synPermPredActiveInc, 0.0)

      # adapt permenence of connections from previously predicted inputs to newly active cells
      # This is a reinforcement learning rule that considers previous input to the current cell
      for i in xrange(self._historyLength):
        self._adaptSynapses(self._prePredictedActiveInput[:,i], activeCells, self._synPermPreviousPredActiveInc, 0.0)

      # Homeostasis learning inherited from the spatial pooler
      self._updateDutyCycles(totalOverlap.astype(UINT_DTYPE), activeCells)
      self._bumpUpWeakColumns()
      self._updateBoostFactors()
      if self._isUpdateRound():
        self._updateInhibitionRadius()
        self._updateMinDutyCycles()

    # save inputs from the previous time step
    self._preActiveInput = copy.copy(activeInput)
    self._prePredictedActiveInput = numpy.roll(self._prePredictedActiveInput,1,1)
    if self._historyLength > 0:
      self._prePredictedActiveInput[:, 0] = predictedActiveInput

    return self._unionSDR


  def _decayPoolingActivation(self):
    """
    Decrements pooling activation of all cells
    """
    if self._decayFunctionType == 'NoDecay':
      self._poolingActivation = self._decayFunction.decay(self._poolingActivation)
    elif self._decayFunctionType == 'Exponential':
      self._poolingActivation = self._decayFunction.decay(\
                                self._poolingActivationInitLevel, self._poolingTimer)

    return self._poolingActivation


  def _addToPoolingActivation(self, activeCells, overlaps):
    """
    Adds overlaps from specified active cells to cells' pooling
    activation.
    @param activeCells: Indices of those cells winning the inhibition step
    @param overlaps: A current set of overlap values for each cell
    @return current pooling activation
    """
    self._poolingActivation[activeCells] = self._exciteFunction.excite(
      self._poolingActivation[activeCells], overlaps[activeCells])

    # increase pooling timers for all cells
    self._poolingTimer[self._poolingTimer >= 0] += 1

    # reset pooling timer for active cells
    self._poolingTimer[activeCells] = 0
    self._poolingActivationInitLevel[activeCells] = self._poolingActivation[activeCells]

    return self._poolingActivation


  def _getMostActiveCells(self):
    """
    Gets the most active cells in the Union SDR having at least non-zero
    activation in sorted order.
    @return: a list of cell indices
    """
    poolingActivation = self._poolingActivation
    nonZeroCells = numpy.argwhere(poolingActivation > 0)[:,0]

    # include a tie-breaker before sorting
    poolingActivationSubset = poolingActivation[nonZeroCells] + \
                              self._poolingActivation_tieBreaker[nonZeroCells]
    potentialUnionSDR = nonZeroCells[numpy.argsort(poolingActivationSubset)[::-1]]

    topCells = potentialUnionSDR[0: self._maxUnionCells]

    if max(self._poolingTimer) > self._minHistory:
      self._unionSDR = numpy.sort(topCells).astype(UINT_DTYPE)
    else:
      self._unionSDR = []

    return self._unionSDR


  # overide
  def _adaptSynapses(self, inputVector, activeColumns, synPermActiveInc, synPermInactiveDec):
    """
    The primary method in charge of learning. Adapts the permanence values of
    the synapses based on the input vector, and the chosen columns after
    inhibition round. Permanence values are increased for synapses connected to
    input bits that are turned on, and decreased for synapses connected to
    inputs bits that are turned off.

    Parameters:
    ----------------------------
    @param inputVector:
                    A numpy array of 0's and 1's that comprises the input to
                    the spatial pooler. There exists an entry in the array
                    for every input bit.
    @param activeColumns:
                    An array containing the indices of the columns that
                    survived inhibition.

    @param synPermActiveInc:
                    Permanence increment for active inputs
    @param synPermInactiveDec:
                    Permanence decrement for inactive inputs
    """
    inputIndices = numpy.where(inputVector > 0)[0]
    permChanges = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
    permChanges.fill(-1 * synPermInactiveDec)
    permChanges[inputIndices] = synPermActiveInc
    perm = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
    potential = numpy.zeros(self.getNumInputs(), dtype=REAL_DTYPE)
    for i in activeColumns:
      self.getPermanence(i, perm)
      self.getPotential(i, potential)
      maskPotential = numpy.where(potential > 0)[0]
      perm[maskPotential] += permChanges[maskPotential]
      self._updatePermanencesForColumn(perm, i, raisePerm=False)


  def getUnionSDR(self):
    return self._unionSDR
 def setUp(self):
   self.fcn = LogisticExciteFunction(xMidpoint=5, minValue=10, maxValue=20, steepness=1)