Esempio n. 1
0
def load_dataset(path):
    image_info_list = []
    with open(os.path.join(path, "attributes", "images-dirs.txt"), "r") as fr:
        images = [filename.split()[1] for filename in fr.readlines()]

    for image in images:
        image_info = {}
        anno = scipy.io.loadmat(os.path.join(path, "annotations-mat", image[:-4]))

        image_info["anno"] = anno
        image_info["image_path"] = os.path.join(path, "images", image)
        image_info["label"] = image.split("/")[0]
        if os.path.exists(os.path.join(path, "images", image)):
            image_info_list.append(image_info)

    ds = dataset.generate(CubGenerator(), image_info_list)
    return ds
Esempio n. 2
0
def load_dataset(path):
    df = pd.read_csv(
        os.path.join(path, "processed", "image_download_actual.csv"))
    country_dirs = os.listdir(os.path.join(path, "countries"))
    image_info_list = []
    for index, row in df.iterrows():
        image_info = {}
        image_info["image_path"] = get_image_path(row['country'],
                                                  row['image_name'], path)
        image_info["nightlights_bin"] = row["nightlights_bin"]
        try:
            Image.open(image_info["image_path"])
            image_info_list.append(image_info)
        except Exception as identifier:
            print("Image not found")

    # the generator iterates through the argument given, one by one and applies forward. This is done lazily.
    ds = dataset.generate(OmdenaGenerator(), image_info_list)
    return ds
Esempio n. 3
0
def load_dataset(base_path):
    labels_list = os.listdir(base_path)
    labels_dict = map_labels(labels_list)
    image_info_list = []
    for label in labels_list:
        for label_num in range(1, NUM_FEATURES + 1):
            curr_path = base_path + "/" + label + "/" + label + "_" + str(
                label_num)
            images_list = os.listdir(curr_path)
            for image in images_list:
                image_info = {}
                if image.lower().startswith(
                        label
                ):  # all images' name starts with the feature name (observation)
                    image_info["image_path"] = curr_path + "/" + image
                    image_info["image_label"] = labels_dict[label]
                    image_info["named_image_label"] = label
                    image_info_list.append(image_info)

    # the generator iterates through the argument given, one by one and applies forward. This is done lazily.
    ds = dataset.generate(DatasetGenerator(), image_info_list)
    return ds
Esempio n. 4
0
def load_dataset(path):
    df = pd.read_csv(os.path.join(path, "processed",
                                  "image_download_locs.csv"))
    country_dirs = os.listdir(os.path.join(path, "countries"))
    image_info_list = []
    for dir in country_dirs:
        images_path = os.path.join(path, "countries", dir, "images")
        image_list = os.listdir(images_path)
        for image_name in image_list:
            image_info = {}
            image_info["image_name"] = image_name
            res_df = df.loc[df["image_name"] == image_name]
            image_info["image_lat"] = res_df.iloc[0]["image_lat"]
            image_info["image_lon"] = res_df.iloc[0]["image_lon"]
            image_info["cluster_lat"] = res_df.iloc[0]["cluster_lat"]
            image_info["cluster_lon"] = res_df.iloc[0]["cluster_lon"]
            image_info["cons_pc"] = res_df.iloc[0]["cons_pc"]
            image_info["nightlights"] = res_df.iloc[0]["nightlights"]
            image_info["country"] = res_df.iloc[0]["country"]
            image_info["nightlights_bin"] = res_df.iloc[0]["nightlights_bin"]
            image_info_list.append(image_info)

    ds = dataset.generate(OmdenaGenerator(path), image_info_list)
    return ds
Esempio n. 5
0
import numpy as np
from hub import Transform, dataset


class Crop(Transform):
    def forward(self, input):
        return {"image": input[0:1, :256, :256]}

    def meta(self):
        return {"image": {"shape": (1, 256, 256), "dtype": "uint8"}}


class Flip(Transform):
    def forward(self, input):
        img = np.expand_dims(input["image"], axis=0)
        img = np.flip(img, axis=(1, 2))
        return {"image": img}

    def meta(self):
        return {"image": {"shape": (1, 256, 256), "dtype": "uint8"}}


images = [np.ones((1, 512, 512), dtype="uint8") for i in range(20)]
ds = dataset.generate(Crop(), images)
ds = dataset.generate(Flip(), ds)
ds.store("/tmp/cropflip")