def main():
        global num_dense_sample
        
        description = 'This script is for testing posenet'
        parser = argparse.ArgumentParser(description=description)
        parser.add_argument('input_beacon_setting_file', action='store', nargs=None, const=None, \
                            default=None, type=str, choices=None, metavar=None, \
                            help='File path where beacon setting file is saved.')
        parser.add_argument('input_model_dir', action='store', nargs=None, const=None, \
                            default=None, type=str, choices=None, metavar=None, \
                            help='Directory path where input model is saved.')
        parser.add_argument('output_graph_file', action='store', nargs=None, const=None, \
                            default=None, type=str, choices=None, metavar=None, \
                            help='File path where exported graph def protobuf (.pb) file will be saved.')
        parser.add_argument('output_model_dir', action='store', nargs=None, const=None, \
                            default=None, type=str, choices=None, metavar=None, \
                            help='Directory path where output model will be saved.')
        parser.add_argument('-s', '--use_shrink_model', action='store_true', default=False, \
                            help='Use shrink model (default: False)')
        parser.add_argument('-l', '--lstm_model', action='store_true', default=False, \
                            help='Export LSTM model (default: False)')
        args = parser.parse_args()
        input_beacon_setting_file = args.input_beacon_setting_file
        input_model_dir = args.input_model_dir
        output_graph_file = args.output_graph_file
        output_model_dir = args.output_model_dir
        output_model_file = os.path.join(output_model_dir, "model.ckpt")        
        use_shrink_model = args.use_shrink_model
        lstm_model = args.lstm_model
        print "use shrink model for training : " + str(use_shrink_model)
        
        # parse beacon setting file
        beaconmap = IBeaconUtils.parseBeaconSetting(input_beacon_setting_file)
        beacon_num = len(beaconmap.keys())
        
        # convert hd5 file to ckpt
        # https://github.com/keras-team/keras/issues/9040
        K.set_learning_phase(0)
        if use_shrink_model:
                if lstm_model:
                        model = posenet_beacon_no_inception_shrink_lstm_keras.create_posenet(beacon_num, trainable=False)
                else:
                        model = posenet_beacon_no_inception_shrink_keras.create_posenet(beacon_num, trainable=False)
        else:
                print "Do not shrink model is not supported"
                sys.exit()
        model.load_weights(os.path.join(input_model_dir, 'trained_weights.h5'))
        model.summary()

        #Save graph and checkpoint
        session = keras.backend.get_session()
        graph = session.graph
        graph_def = graph.as_graph_def()
        with gfile.GFile(output_graph_file, 'wb') as f:
            f.write(graph_def.SerializeToString())
        
        saver = tf.train.Saver()
        saver.save(session, output_model_file)
Esempio n. 2
0
def main():
    description = 'This script is for testing posenet'
    parser = argparse.ArgumentParser(description=description)
    parser.add_argument('input_txt_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path of input txt file in Cambridge Visual Landmark Dataset format.')
    parser.add_argument('input_beacon_setting_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path where beacon setting file is saved.')
    parser.add_argument('output_model_dir', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Directory path where output models will be saved.')
    parser.add_argument('output_log_dir', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Directory path where log files will be saved.')
    parser.add_argument('-w', '--input_beacon_weight_file', action='store', type=str, default=None, \
                        help='File path beacon posenet weiht is stored in numpy format.')
    parser.add_argument('-s', '--use_shrink_model', action='store_true', default=False, \
                        help='Use shrink model (default: False)')
    parser.add_argument('-f', '--use_fixed_input_mean_std', action='store_true', default=False, \
                        help='Use fixed input mean and std (default: False)')
    parser.add_argument('-a', '--use_augmentation_beacon', action='store_true', default=False, \
                        help='Use data augmentation for beacon data (default: False)')
    parser.add_argument('-e', '--epochs', action='store', type=int, default=posenet_config.epochs, \
                        help='Epochs (Default : ' + str(posenet_config.epochs))
    parser.add_argument('-b', '--batch_size', action='store', type=int, default=posenet_config.lstm_batch_size, \
                        help='Batch size (Default : ' + str(posenet_config.lstm_batch_size))
    args = parser.parse_args()
    input_txt_file = args.input_txt_file
    input_beacon_setting_file = args.input_beacon_setting_file
    output_model_dir = args.output_model_dir
    output_log_dir = args.output_log_dir
    input_beacon_weight_file = args.input_beacon_weight_file
    use_shrink_model = args.use_shrink_model
    use_fixed_input_mean_std = args.use_fixed_input_mean_std
    use_augmentation_beacon = args.use_augmentation_beacon
    posenet_config.epochs = args.epochs
    posenet_config.lstm_batch_size = args.batch_size
    print "epochs : " + str(posenet_config.epochs)
    print "batch size : " + str(posenet_config.lstm_batch_size)
    print "use shrink model for training : " + str(use_shrink_model)
    print "use fixed input mean and std : " + str(use_fixed_input_mean_std)
    print "use beacon data augmentation : " + str(use_augmentation_beacon)
    if input_beacon_weight_file is None:
        print "please specify one of initial weight or restore directory"
        sys.exit()

    # parse beacon setting file
    beaconmap = IBeaconUtils.parseBeaconSetting(input_beacon_setting_file)
    beacon_num = len(beaconmap.keys())

    output_numpy_mean_beacon_file = os.path.join(output_model_dir,
                                                 "mean_beacon.npy")
    output_numpy_model_file = os.path.join(output_model_dir, "model.npy")
    output_model_file = os.path.join(output_model_dir, "model.ckpt")

    datasource, mean_beacon = posenet_data_utils.get_beacon_data(
        input_txt_file, beaconmap, beacon_num, use_fixed_input_mean_std,
        use_augmentation_beacon)
    if use_fixed_input_mean_std:
        print("Skip save mean beacon")
    else:
        with open(output_numpy_mean_beacon_file, 'wb') as fw:
            np.save(fw, mean_beacon)
        print("Save mean beacon at: " + output_numpy_mean_beacon_file)

    # Set GPU options
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
    session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    KTF.set_session(session)

    # Train model
    s_x = K.variable(value=0.0)
    s_q = K.variable(value=-3.0)
    if use_shrink_model:
        model = posenet_beacon_no_inception_shrink_lstm_keras.create_posenet(
            beacon_num, input_beacon_weight_file)
    else:
        print "Do not shrink model is not supported"
        sys.exit()
    adam = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=0.00000001)
    euc_loss3x_s = posenet_homoscedastic_loss.euc_loss3x_s(s_x=s_x)
    euc_loss3q_s = posenet_homoscedastic_loss.euc_loss3q_s(s_q=s_q)
    model.compile(optimizer=adam,
                  loss={
                      'beacon_lstm_pose_xyz': euc_loss3x_s,
                      'beacon_lstm_pose_wpqr': euc_loss3q_s
                  })
    model.summary()

    # Setup checkpointing
    checkpointer = ModelCheckpoint(filepath=os.path.join(
        output_model_dir, "checkpoint_weights.h5"),
                                   verbose=1,
                                   save_weights_only=True,
                                   period=1)

    # Save Tensorboard log
    logger = TensorBoard(log_dir=output_log_dir,
                         histogram_freq=0,
                         write_graph=True)

    # Adjust Epoch size depending on beacon data augmentation
    if use_augmentation_beacon:
        posenet_config.epochs = posenet_config.epochs / posenet_config.num_beacon_augmentation
    steps_per_epoch = int(
        len(datasource.poses_index) / float(posenet_config.lstm_batch_size))
    num_iterations = steps_per_epoch * posenet_config.epochs
    print("Number of epochs : " + str(posenet_config.epochs))
    print("Number of training data : " + str(len(datasource.poses_index)))
    print("Number of iterations : " + str(num_iterations))

    history = model.fit_generator(
        posenet_data_utils.gen_beacon_lstm_data_batch(datasource),
        steps_per_epoch=steps_per_epoch,
        epochs=posenet_config.epochs,
        callbacks=[checkpointer, logger])

    model.save_weights(os.path.join(output_model_dir, "trained_weights.h5"))
Esempio n. 3
0
def main():
    global base_model

    description = 'This script is for testing posenet'
    parser = argparse.ArgumentParser(description=description)
    parser.add_argument('input_txt_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path of input txt file in Cambridge Visual Landmark Dataset format.')
    parser.add_argument('input_beacon_setting_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path where beacon setting file is saved.')
    parser.add_argument('input_model_dir', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Directory path where input model is saved.')
    parser.add_argument('result_log_dir', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Directory path where localization result files are saved.')
    parser.add_argument('-s', '--use_shrink_model', action='store_true', default=False, \
                        help='Use shrink model (default: False)')
    parser.add_argument('-f', '--use_fixed_input_mean_std', action='store_true', default=False, \
                        help='Use fixed input mean and std (default: False)')
    parser.add_argument('-m', '--base_model', action='store', type=str, default=base_model, \
                        help='Base model : inception-v1/inception-v3/mobilenet-v1 (Default : ' + str(base_model))
    args = parser.parse_args()
    input_txt_file = args.input_txt_file
    input_beacon_setting_file = args.input_beacon_setting_file
    input_model_dir = args.input_model_dir
    result_log_dir = args.result_log_dir
    use_shrink_model = args.use_shrink_model
    use_fixed_input_mean_std = args.use_fixed_input_mean_std
    base_model = args.base_model
    print "base model : " + str(base_model)
    print "use shrink model for training : " + str(use_shrink_model)
    print "use fixed input mean and std : " + str(use_fixed_input_mean_std)
    if base_model != "inception-v1" and base_model != "inception-v3" and base_model != "mobilenet-v1":
        print "invalid base model : " + base_model
        sys.exit()

    input_image_dir = os.path.dirname(input_txt_file)
    input_numpy_mean_image_file = os.path.join(input_model_dir,
                                               "mean_image.npy")
    if use_fixed_input_mean_std:
        input_numpy_mean_image = None
    else:
        input_numpy_mean_image = np.load(input_numpy_mean_image_file)
    input_numpy_mean_beacon_file = os.path.join(input_model_dir,
                                                "mean_beacon.npy")
    if use_fixed_input_mean_std:
        input_numpy_mean_beacon = None
    else:
        input_numpy_mean_beacon = np.load(input_numpy_mean_beacon_file)
    output_localize_txt_file = os.path.join(result_log_dir,
                                            "localize-poses.txt")
    output_localize_json_file = os.path.join(result_log_dir,
                                             "localize-poses.json")
    output_summary_log_file = os.path.join(result_log_dir, "summary-log.txt")
    output_hist_log_file = os.path.join(result_log_dir, "hist-log.txt")
    output_detail_log_file = os.path.join(result_log_dir, "detail-log.txt")

    # parse beacon setting file
    beaconmap = IBeaconUtils.parseBeaconSetting(input_beacon_setting_file)
    beacon_num = len(beaconmap.keys())

    if base_model == "inception-v1":
        image_size = 224
        output_auxiliary = True
    elif base_model == "inception-v3":
        image_size = 299
        output_auxiliary = False
    elif base_model == "mobilenet-v1":
        image_size = 224
        output_auxiliary = False
    else:
        print "invalid base model : " + base_model
        sys.exit()
    datasource, image_filenames = get_data(input_txt_file, input_image_dir,
                                           input_numpy_mean_image, beaconmap,
                                           input_numpy_mean_beacon,
                                           use_fixed_input_mean_std)
    predicted_poses = np.zeros((len(datasource.beacons), 7))
    groundtruth_poses = np.zeros((len(datasource.beacons), 7))
    results = np.zeros((len(datasource.beacons), 2))

    # Set GPU options
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
    session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    KTF.set_session(session)

    # load model
    if use_shrink_model:
        if base_model == "inception-v1":
            model = posenet_image_beacon_no_inception_shrink_keras.create_posenet_inception_v1(
                beacon_num)
        elif base_model == "inception-v3":
            model = posenet_image_beacon_no_inception_shrink_keras.create_posenet_inception_v3(
                beacon_num)
        elif base_model == "mobilenet-v1":
            model = posenet_image_beacon_no_inception_shrink_keras.create_posenet_mobilenet_v1(
                beacon_num)
        else:
            print "invalid base model : " + base_model
            sys.exit()
    else:
        print "Do not shrink model is not supported"
        sys.exit()
    model.load_weights(os.path.join(input_model_dir, 'trained_weights.h5'))
    model.summary()

    time_array = np.array([])

    for i in range(len(datasource.image_filenames)):
        np_images = posenet_image_utils.preprocess_test_image(
            datasource.image_filenames[i],
            input_numpy_mean_image,
            use_fixed_input_mean_std,
            1,
            False,
            image_size=image_size)
        np_beacon = datasource.beacons[i]

        pose_q = np.asarray(datasource.poses[i][3:7])
        pose_x = np.asarray(datasource.poses[i][0:3])
        start_time = time.time()
        sample_predicted = model.predict([np_images, np_beacon])
        if output_auxiliary:
            # 0-3 are results for auxiliary outputs
            sample_predicted_x = sample_predicted[4]
            sample_predicted_q = sample_predicted[5]
        else:
            sample_predicted_x = sample_predicted[0]
            sample_predicted_q = sample_predicted[1]
        elapsed_time = time.time() - start_time
        time_array = np.append(time_array, elapsed_time)

        pose_q = np.squeeze(pose_q)
        pose_x = np.squeeze(pose_x)
        predicted_q = np.squeeze(sample_predicted_q)
        predicted_x = np.squeeze(sample_predicted_x)

        predicted_poses[i, 0] = predicted_x[0]
        predicted_poses[i, 1] = predicted_x[1]
        predicted_poses[i, 2] = predicted_x[2]
        predicted_poses[i, 3] = predicted_q[0]
        predicted_poses[i, 4] = predicted_q[1]
        predicted_poses[i, 5] = predicted_q[2]
        predicted_poses[i, 6] = predicted_q[3]

        groundtruth_poses[i, 0] = pose_x[0]
        groundtruth_poses[i, 1] = pose_x[1]
        groundtruth_poses[i, 2] = pose_x[2]
        groundtruth_poses[i, 3] = pose_q[0]
        groundtruth_poses[i, 4] = pose_q[1]
        groundtruth_poses[i, 5] = pose_q[2]
        groundtruth_poses[i, 6] = pose_q[3]

        # calculate error
        q1 = pose_q / np.linalg.norm(pose_q)
        q2 = predicted_q / np.linalg.norm(predicted_q)
        d = abs(np.sum(np.multiply(q1, q2)))
        # fix floating point inaccuracy
        if d < -1.0:
            d = -1.0
        if d > 1.0:
            d = 1.0
        theta = 2 * np.arccos(d) * 180 / math.pi
        error_x = np.linalg.norm(pose_x - predicted_x)
        results[i, :] = [error_x, theta]
        print 'Index=', i, ' , Pos Error(m)=', error_x, ',  Rot Error(degrees)=', theta

    # write localize poses
    with open(output_localize_txt_file, "w") as fw:
        fw.write("Localization Data V1\n")
        fw.write("ImageFile, Camera Position [X Y Z W P Q R]\n")
        fw.write("\n")
        for idx in range(len(datasource.beacons)):
            fw.write(
                str(idx) + " " +
                ' '.join(['%f' % p for p in predicted_poses[idx, :]]) + "\n")
    locJsonObj = {}
    locJsonObj["locGlobal"] = []
    for idx, pose in enumerate(predicted_poses):
        Rh = transformations.quaternion_matrix(
            [pose[3], pose[4], pose[5], pose[6]])
        groundtruth_pose = groundtruth_poses[idx]
        groundtruth_Rh = transformations.quaternion_matrix([
            groundtruth_pose[3], groundtruth_pose[4], groundtruth_pose[5],
            groundtruth_pose[6]
        ])

        jsonLoc = {}
        jsonLoc["beacon_idx"] = idx
        jsonLoc["t"] = [pose[0], pose[1], pose[2]]
        jsonLoc["R"] = Rh[0:3, 0:3].tolist()
        jsonLoc["groundtruth"] = [
            groundtruth_pose[0], groundtruth_pose[1], groundtruth_pose[2]
        ]
        jsonLoc["groundtruthR"] = groundtruth_Rh[0:3, 0:3].tolist()
        locJsonObj["locGlobal"].append(jsonLoc)
    with open(output_localize_json_file, "w") as fw:
        json.dump(locJsonObj, fw)

    # write histgram results
    bin_edge = [0.01 * float(x) for x in range(0, 1001)]
    dist_errors = results[:, 0]
    dist_hist, dist_hist_bins = np.histogram(dist_errors, bins=bin_edge)
    dist_hist_cum_ratio = np.cumsum(dist_hist) / float(len(datasource.beacons))
    print "Histogram of error: " + str(dist_hist)
    print "Cumulative ratio of error: " + str(dist_hist_cum_ratio)
    print "Total loc err larger than " + str(
        np.max(bin_edge)) + " meters: " + str(
            len(datasource.beacons) - np.sum(dist_hist))

    # write summary of results
    mean_result = np.mean(results, axis=0)
    std_result = np.std(results, axis=0)
    median_result = np.median(results, axis=0)
    max_result = np.max(results, axis=0)
    percentile_80_result = np.percentile(results, 80, axis=0)
    percentile_90_result = np.percentile(results, 90, axis=0)
    percentile_95_result = np.percentile(results, 95, axis=0)
    print 'Mean error ', mean_result[0], 'm  and ', mean_result[1], 'degrees.'
    print 'StdDev error ', std_result[0], 'm  and ', std_result[1], 'degrees.'
    print 'Median error ', median_result[0], 'm  and ', median_result[
        1], 'degrees.'
    print 'Max error ', max_result[0], 'm  and ', max_result[1], 'degrees.'
    print '80 percentile error ', percentile_80_result[
        0], 'm  and ', percentile_80_result[1], 'degrees.'
    print '90 percentile error ', percentile_90_result[
        0], 'm  and ', percentile_90_result[1], 'degrees.'
    print '95 percentile error ', percentile_95_result[
        0], 'm  and ', percentile_95_result[1], 'degrees.'
    print 'Mean time ', str(np.average(time_array))
    print 'StdDev time ', str(np.std(time_array))
    print 'Median time ', str(np.median(time_array))
    with open(output_summary_log_file, "w") as fw:
        fw.write("Number of test image = " + str(len(datasource.beacons)) +
                 "\n")
        fw.write("Mean error = " + str(mean_result[0]) + " meters." + "\n")
        fw.write("StdDev error = " + str(std_result[0]) + " meters." + "\n")
        fw.write("Median error = " + str(median_result[0]) + " meters." + "\n")
        fw.write("Max error = " + str(max_result[0]) + " meters." + "\n")
        fw.write("80 percentile error = " + str(percentile_80_result[0]) +
                 " meters." + "\n")
        fw.write("90 percentile error = " + str(percentile_90_result[0]) +
                 " meters." + "\n")
        fw.write("95 percentile error = " + str(percentile_95_result[0]) +
                 " meters." + "\n")
        fw.write("\n")
        fw.write("Mean error = " + str(mean_result[1]) + " degrees." + "\n")
        fw.write("StdDev error = " + str(std_result[1]) + " degrees." + "\n")
        fw.write("Median error = " + str(median_result[1]) + " degrees." +
                 "\n")
        fw.write("Max error = " + str(max_result[1]) + " degrees." + "\n")
        fw.write("80 percentile error = " + str(percentile_80_result[1]) +
                 " degrees." + "\n")
        fw.write("90 percentile error = " + str(percentile_90_result[1]) +
                 " degrees." + "\n")
        fw.write("95 percentile error = " + str(percentile_95_result[1]) +
                 " degrees." + "\n")
        fw.write("\n")
        fw.write("Histogram of error: " + str(dist_hist) + "\n")
        fw.write("Cumulative ratio: " + str(
            np.around(
                np.cumsum(dist_hist, dtype=float) /
                len(datasource.beacons), 2)) + "\n")
        fw.write("Total loc err larger than " + str(np.max(bin_edge)) +
                 " meters: " +
                 str(len(datasource.beacons) - np.sum(dist_hist)) + "\n")
        fw.write("\n")
        fw.write("Mean time = " + str(np.average(time_array)) + "\n")
        fw.write("StdDev time = " + str(np.std(time_array)) + "\n")
        fw.write("Median time = " + str(np.median(time_array)) + "\n")
    # write error histgram
    np.savetxt(output_hist_log_file,
               zip(dist_hist_bins, dist_hist_cum_ratio),
               delimiter=',')
    # write error histgram
    np.savetxt(output_hist_log_file,
               zip(dist_hist_bins, dist_hist_cum_ratio),
               delimiter=',')

    # write detail results
    with open(output_detail_log_file, "w") as fw:
        for idx in range(len(datasource.beacons)):
            fw.write(
                str(idx) + "," + str(results[idx, 0]) + "," +
                str(results[idx, 1]) + "\n")
Esempio n. 4
0
def main():
        global output_pos_layer_name
        global output_rot_layer_name
        
        description = 'This script is for testing posenet'
        parser = argparse.ArgumentParser(description=description)
        parser.add_argument('input_txt_file', action='store', nargs=None, const=None, \
                            default=None, type=str, choices=None, metavar=None, \
                            help='File path of input txt file in Cambridge Visual Landmark Dataset format.')
        parser.add_argument('input_beacon_setting_file', action='store', nargs=None, const=None, \
                            default=None, type=str, choices=None, metavar=None, \
                            help='File path where beacon setting file is saved.')
        parser.add_argument('input_pb_file', action='store', nargs=None, const=None, \
                            default=None, type=str, choices=None, metavar=None, \
                            help='File path of model pb file.')
        parser.add_argument('result_log_dir', action='store', nargs=None, const=None, \
                            default=None, type=str, choices=None, metavar=None, \
                            help='Directory path where localization result files are saved.')
        parser.add_argument('-f', '--use_fixed_input_mean_std', action='store_true', default=False, \
                            help='Use fixed input mean and std (default: False)')
        parser.add_argument('-m', '--base_model', action='store', type=str, default=posenet_config.base_model, \
                            help='Base model : inception-v1/inception-v3/mobilenet-v1 (Default : ' + str(posenet_config.base_model))
        args = parser.parse_args()
        input_txt_file = args.input_txt_file
        input_beacon_setting_file = args.input_beacon_setting_file
        input_pb_file = args.input_pb_file
        result_log_dir = args.result_log_dir
        use_fixed_input_mean_std = args.use_fixed_input_mean_std
        posenet_config.base_model = args.base_model
        print "base model : " + str(posenet_config.base_model)

        # you can check output node name by tensorflow/tools/graph_transforms::summarize_graph
        # https://github.com/tensorflow/models/tree/master/research/slim#Export
        if posenet_config.base_model=="inception-v1":
            output_pos_layer_name = "image_beacon_cls3_fc_pose_xyz/BiasAdd"
            output_rot_layer_name = "image_beacon_cls3_fc_pose_wpqr/BiasAdd"
        elif posenet_config.base_model=="inception-v3" or posenet_config.base_model=="mobilenet-v1":
            output_pos_layer_name = "image_beacon_cls_fc_pose_xyz/BiasAdd"
            output_rot_layer_name = "image_beacon_cls_fc_pose_wpqr/BiasAdd"
        else:
            print "invalid base model : " + posenet_config.base_model
            sys.exit()
        
        input_image_dir = os.path.dirname(input_txt_file)
        input_model_dir = os.path.dirname(input_pb_file)
        input_numpy_mean_image_file = os.path.join(input_model_dir, "mean_image.npy")
        if use_fixed_input_mean_std:
            input_numpy_mean_image = None
        else:
            input_numpy_mean_image = np.load(input_numpy_mean_image_file)
        input_numpy_mean_beacon_file = os.path.join(input_model_dir, "mean_beacon.npy")
        if use_fixed_input_mean_std:
            input_numpy_mean_beacon = None
        else:
            input_numpy_mean_beacon = np.load(input_numpy_mean_beacon_file)
        output_localize_txt_file = os.path.join(result_log_dir, "localize-poses.txt")
        output_localize_json_file = os.path.join(result_log_dir, "localize-poses.json")
        output_summary_log_file = os.path.join(result_log_dir, "summary-log.txt")
        output_hist_log_file = os.path.join(result_log_dir, "hist-log.txt")
        output_detail_log_file = os.path.join(result_log_dir, "detail-log.txt")
        
        # parse beacon setting file
        beaconmap = IBeaconUtils.parseBeaconSetting(input_beacon_setting_file)
        beacon_num = len(beaconmap.keys())
        
	image = tf.placeholder(tf.float32, [1, 224, 224, 3])
	beacons = tf.placeholder(tf.float32, [1, beacon_num, 1, 1])
	datasource, image_filenames = get_data(input_txt_file, input_image_dir, input_numpy_mean_image, beaconmap, input_numpy_mean_beacon, use_fixed_input_mean_std)
        predicted_poses = np.zeros((len(datasource.images),7))
        groundtruth_poses = np.zeros((len(datasource.images),7))
	results = np.zeros((len(datasource.images),2))
        
	# Set GPU options
	gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
        
        time_array = np.array([])
        
        # Load model
        graph = load_graph(input_pb_file)
        input_image_name = "import/" + input_image_layer_name        
        input_beacon_name = "import/" + input_beacon_layer_name
        output_pos_name = "import/" + output_pos_layer_name
        output_rot_name = "import/" + output_rot_layer_name
        input_image_operation = graph.get_operation_by_name(input_image_name)
        input_beacon_operation = graph.get_operation_by_name(input_beacon_name)
        output_pos_operation = graph.get_operation_by_name(output_pos_name)
        output_rot_operation = graph.get_operation_by_name(output_rot_name)
        
	with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options), graph=graph) as sess:
		for i in range(len(datasource.images)):
			np_image = datasource.images[i]
			np_beacon = datasource.beacons[i]
			feed = {input_image_operation.outputs[0]: np_image, input_beacon_operation.outputs[0]: np_beacon}
                        
			pose_q= np.asarray(datasource.poses[i][3:7])
			pose_x= np.asarray(datasource.poses[i][0:3])
                        start_time = time.time()
			predicted_x, predicted_q = sess.run([output_pos_operation.outputs[0],
                                                             output_rot_operation.outputs[0]], feed_dict=feed)
                        elapsed_time = time.time() - start_time
                        time_array = np.append(time_array, elapsed_time)

			pose_q = np.squeeze(pose_q)
			pose_x = np.squeeze(pose_x)
			predicted_q = np.squeeze(predicted_q)
			predicted_x = np.squeeze(predicted_x)
                        
                        predicted_poses[i,0] = predicted_x[0]
                        predicted_poses[i,1] = predicted_x[1]
                        predicted_poses[i,2] = predicted_x[2]
                        predicted_poses[i,3] = predicted_q[0]
                        predicted_poses[i,4] = predicted_q[1]
                        predicted_poses[i,5] = predicted_q[2]
                        predicted_poses[i,6] = predicted_q[3]
                        
                        groundtruth_poses[i,0] = pose_x[0]
                        groundtruth_poses[i,1] = pose_x[1]
                        groundtruth_poses[i,2] = pose_x[2]
                        groundtruth_poses[i,3] = pose_q[0]
                        groundtruth_poses[i,4] = pose_q[1]
                        groundtruth_poses[i,5] = pose_q[2]
                        groundtruth_poses[i,6] = pose_q[3]
                        
			# calculate error
			q1 = pose_q / np.linalg.norm(pose_q)
			q2 = predicted_q / np.linalg.norm(predicted_q)
			d = abs(np.sum(np.multiply(q1,q2)))
                        # fix floating point inaccuracy
                        if d<-1.0:
                                d = -1.0
                        if d>1.0:
                                d = 1.0
			theta = 2 * np.arccos(d) * 180/math.pi
			error_x = np.linalg.norm(pose_x-predicted_x)
			results[i,:] = [error_x,theta]
                        print 'Index=', i, ' , Pos Error(m)=', error_x, ',  Rot Error(degrees)=', theta
        
        # write localize poses
        with open(output_localize_txt_file, "w") as fw:
                fw.write("Localization Data V1\n")
                fw.write("ImageFile, Camera Position [X Y Z W P Q R]\n")
                fw.write("\n")
                for idx, filename in enumerate(image_filenames):
                        fw.write(os.path.basename(filename) + " " + ' '.join(['%f' % p for p in predicted_poses[idx,:]]) + "\n")
        locJsonObj = {}
        locJsonObj["locGlobal"] = []
        for idx, pose in enumerate(predicted_poses):
                Rh = transformations.quaternion_matrix([pose[3], pose[4], pose[5], pose[6]])
                groundtruth_pose = groundtruth_poses[idx]
                groundtruth_Rh = transformations.quaternion_matrix([groundtruth_pose[3], groundtruth_pose[4], groundtruth_pose[5], groundtruth_pose[6]])
                
                jsonLoc = {}
                jsonLoc["filename"] = os.path.basename(image_filenames[idx])
                jsonLoc["t"] = [pose[0], pose[1], pose[2]]
                jsonLoc["R"] = Rh[0:3,0:3].tolist()
                jsonLoc["groundtruth"] = [groundtruth_pose[0], groundtruth_pose[1], groundtruth_pose[2]]
                jsonLoc["groundtruthR"] = groundtruth_Rh[0:3,0:3].tolist()
                locJsonObj["locGlobal"].append(jsonLoc)
        with open(output_localize_json_file, "w") as fw:
                json.dump(locJsonObj, fw)
        
        # write histgram results
        bin_edge = [0.01*float(x) for x in range(0,1001)]
        dist_errors = results[:,0]
        dist_hist, dist_hist_bins = np.histogram(dist_errors, bins=bin_edge)
        dist_hist_cum_ratio = np.cumsum(dist_hist) / float(len(datasource.images))
        print "Histogram of error: " + str(dist_hist)
        print "Cumulative ratio of error: " + str(dist_hist_cum_ratio)
        print "Total loc err larger than " + str(np.max(bin_edge)) + " meters: " + str(len(datasource.images)-np.sum(dist_hist))

        # write summary of results
	mean_result = np.mean(results,axis=0)
	std_result = np.std(results,axis=0)
	median_result = np.median(results,axis=0)
	max_result = np.max(results,axis=0)        
        percentile_80_result = np.percentile(results,80,axis=0)
        percentile_90_result = np.percentile(results,90,axis=0)
        percentile_95_result = np.percentile(results,95,axis=0)
	print 'Mean error ', mean_result[0], 'm  and ', mean_result[1], 'degrees.'
	print 'StdDev error ', std_result[0], 'm  and ', std_result[1], 'degrees.'
	print 'Median error ', median_result[0], 'm  and ', median_result[1], 'degrees.'
	print 'Max error ', max_result[0], 'm  and ', max_result[1], 'degrees.'        
	print '80 percentile error ', percentile_80_result[0], 'm  and ', percentile_80_result[1], 'degrees.'
	print '90 percentile error ', percentile_90_result[0], 'm  and ', percentile_90_result[1], 'degrees.'
	print '95 percentile error ', percentile_95_result[0], 'm  and ', percentile_95_result[1], 'degrees.'
	print 'Mean time ', str(np.average(time_array))
	print 'StdDev time ', str(np.std(time_array))
	print 'Median time ', str(np.median(time_array))
        with open(output_summary_log_file, "w") as fw:
                fw.write("Number of test image = " + str(len(datasource.images)) + "\n")
                fw.write("Mean error = " + str(mean_result[0]) + " meters." + "\n")
                fw.write("StdDev error = " + str(std_result[0]) + " meters." + "\n")
                fw.write("Median error = " + str(median_result[0]) + " meters." + "\n")
                fw.write("Max error = " + str(max_result[0]) + " meters." + "\n")
	        fw.write("80 percentile error = " + str(percentile_80_result[0]) + " meters." + "\n")
	        fw.write("90 percentile error = " + str(percentile_90_result[0]) + " meters." + "\n")
	        fw.write("95 percentile error = " + str(percentile_95_result[0]) + " meters." + "\n")
                fw.write("\n")
                fw.write("Mean error = " + str(mean_result[1]) + " degrees." + "\n")
                fw.write("StdDev error = " + str(std_result[1]) + " degrees." + "\n")
                fw.write("Median error = " + str(median_result[1]) + " degrees." + "\n")
                fw.write("Max error = " + str(max_result[1]) + " degrees." + "\n")
	        fw.write("80 percentile error = " + str(percentile_80_result[1]) + " degrees." + "\n")
                fw.write("90 percentile error = " + str(percentile_90_result[1]) + " degrees." + "\n")
                fw.write("95 percentile error = " + str(percentile_95_result[1]) + " degrees." + "\n")
                fw.write("\n")
                fw.write("Histogram of error: " + str(dist_hist) + "\n")
                fw.write("Cumulative ratio: " + str(np.around(np.cumsum(dist_hist,dtype=float)/len(datasource.images),2)) + "\n")
                fw.write("Total loc err larger than " + str(np.max(bin_edge)) + " meters: " + str(len(datasource.images)-np.sum(dist_hist)) + "\n")
                fw.write("\n")
                fw.write("Mean time = " + str(np.average(time_array)) + "\n")
                fw.write("StdDev time = " + str(np.std(time_array)) + "\n")
                fw.write("Median time = " + str(np.median(time_array)) + "\n")
        # write error histgram
        np.savetxt(output_hist_log_file, zip(dist_hist_bins, dist_hist_cum_ratio), delimiter=',')
        # write error histgram
        np.savetxt(output_hist_log_file, zip(dist_hist_bins, dist_hist_cum_ratio), delimiter=',')

        # write detail results
        with open(output_detail_log_file, "w") as fw:
                for idx, filename in enumerate(image_filenames):
                        fw.write(os.path.basename(filename) + "," + str(results[idx,0]) + "," + str(results[idx,1]) + "\n")
def main():
    description = 'This script is for merging multiple SfM output models to one SfM model.' + \
                'Please prepare multiple OpenMVG projects which have output SfM models, and matrix to convert to global coordinate.'
    parser = argparse.ArgumentParser(description=description)
    parser.add_argument('input_csv', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Input CSV file which lists OpenMVG projects which will be merged.')
    parser.add_argument('output_dir', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Output directory path where merged model will be saved.')
    args = parser.parse_args()
    input_csv = args.input_csv
    output_dir = args.output_dir
        
    # load reconstruct parameters
    reconstructParam = ReconstructParam.ReconstructParam
    reconstructIBeaconParam = ReconstructIBeaconParam.ReconstructIBeaconParam
    
    # read projects list
    projectList = []
    with open(input_csv, "r") as f:
        reader = csv.reader(f)
        for row in reader:
            project = {}
            project["dir"]  = row[0]
            project["sfm_data"]  = row[1]
            project["A"] = row[2]
            projectList.append(project)
    
    # copy source files to output directory
    for project in projectList:
        copyOriginalFiles(project["dir"], output_dir)
    
    # load beacon settings
    mergeBeaconmap = None
    for project in projectList:
        beacon_file = os.path.join(project["dir"], "Input", "listbeacon.txt")
        if os.path.exists(beacon_file):
            beaconmap = iBeaconUtils.parseBeaconSetting(beacon_file)
            if mergeBeaconmap is None:
                mergeBeaconmap = beaconmap
            else:
                if mergeBeaconmap!=beaconmap:
                    print "invalid find listbeacon.txt for project data : " + project["dir"]
                    print "listbeacon.txt should be same for all project data"
                    sys.exit()
                else:
                    print "valid listbeacon.txt for project data : " + project["dir"]
    
    # prepare output directory
    if not os.path.isdir(os.path.join(output_dir,"Ref")):
        FileUtils.makedir(os.path.join(output_dir,"Ref"))
    if not os.path.isdir(os.path.join(output_dir,"Ref","loc")):
        FileUtils.makedir(os.path.join(output_dir,"Ref","loc"))
    if not os.path.isdir(os.path.join(output_dir,"Output","SfM")):
        FileUtils.makedir(os.path.join(output_dir,"Output","SfM"))
    if not os.path.isdir(os.path.join(output_dir,"Output","SfM","reconstruction")):
        FileUtils.makedir(os.path.join(output_dir,"Output","SfM","reconstruction"))
    if not os.path.isdir(os.path.join(output_dir,"Output","SfM","reconstruction","global")):
        FileUtils.makedir(os.path.join(output_dir,"Output","SfM","reconstruction","global"))
    
    sfmDataList = []
    for project in projectList:
        if not os.path.exists(project["sfm_data"]):
            print "cannot find sfm data : " + project["sfm_data"]
            sys.exit()
        with open(project["sfm_data"]) as jsonFile:
            sfmDataList.append(json.load(jsonFile))
    
    AList = []
    for project in projectList:
        AList.append(np.loadtxt(project["A"]))
        print "load mat : " + project["A"]
        print (np.loadtxt(project["A"]))
    
    print "Load 3D points"
    pointIdList = []
    pointList = []
    for sfmData in sfmDataList:
        pointId, point = mergeSfM.getAll3DPointloc(sfmData)
        pointn = np.asarray(point, dtype=np.float).T
        
        pointIdList.append(pointId)
        pointList.append(pointn)
    
    # merge models
    mergeSfmData = None
    mergePointId = None
    mergePointn = None
    for idx in range(0, len(sfmDataList)):
        if idx==0:
            mergeSfmData = sfmDataList[0]
            mergeSfM.transform_sfm_data(mergeSfmData, AList[0])
        else:
            mergePointThres = mergeSfM.findMedianStructurePointsThres(mergeSfmData, reconstructParam.mergePointThresMul)
            print "thres to merge 3D points : " + str(mergePointThres)
            
            inlierMap = findInliersByKnownTransform(mergePointId, pointIdList[idx], mergePointn, pointList[idx], AList[idx], mergePointThres)
            print "number of points in base model : " + str(len(mergePointn[0]))
            print "number of points in model " + str(idx) + " : " + str(len(pointList[idx]))
            print "number of inliers : " + str(len(inlierMap))
            
            mergeSfM.merge_sfm_data(mergeSfmData, sfmDataList[idx], AList[idx], {x[0]: x[1] for x in inlierMap})
        
        mergePointId, mergePoint = mergeSfM.getAll3DPointloc(mergeSfmData)
        mergePointn = np.asarray(mergePoint, dtype=np.float).T
    
    # go back to coordinate of the first model
    _invA = np.linalg.inv(AList[0][0:3,0:3])
    invA = np.c_[_invA, -np.dot(_invA,AList[0][:,3])]
    mergeSfM.transform_sfm_data(mergeSfmData, invA)
    
    mergeSfmData["root_path"] = os.path.join(output_dir,"Input","inputImg")
    
    resultSfMDataFile = os.path.join(output_dir,"Output","SfM","reconstruction","global","sfm_data.json")
    with open(resultSfMDataFile,"w") as jsonfile:
        json.dump(mergeSfmData, jsonfile)
    
    # write new beacon file
    if mergeBeaconmap is not None:
        iBeaconUtils.exportBeaconDataForSfmImageFrames(os.path.join(output_dir,"Input","csv"), resultSfMDataFile, 
                                                       os.path.join(output_dir,"Input","listbeacon.txt"),
                                                       os.path.join(output_dir,"Output","SfM","reconstruction","global","beacon.txt"), 
                                                       reconstructIBeaconParam.normApproach)
    
    '''
    os.system(reconstructParam.BUNDLE_ADJUSTMENT_PROJECT_PATH + " " + resultSfMDataFile + " " + resultSfMDataFile)
    '''
    os.system(reconstructParam.BUNDLE_ADJUSTMENT_PROJECT_PATH + " " + resultSfMDataFile + " " + resultSfMDataFile + \
              " -c=" + "rst,rsti" + " -r=" + "1")
    
    Amat = AList[0]
    with open(os.path.join(output_dir,"Ref","Amat.txt"),"w") as AmatFile:
        np.savetxt(AmatFile,Amat)
    FileUtils.convertNumpyMatTxt2OpenCvMatYml(os.path.join(output_dir,"Ref","Amat.txt"), os.path.join(output_dir,"Ref","Amat.yml"), "A")
    
    # To create same directory structure before merging, create sfm_data.json without structure information in matches directory
    with open(resultSfMDataFile) as fpr:
        sfmData = json.load(fpr)
        sfmData["extrinsics"] = []
        sfmData["control_points"] = []
        sfmData["structure"] = []
        with open(os.path.join(output_dir,"Output","matches","sfm_data.json"),"w") as fpw:
            json.dump(sfmData, fpw)
    
    print "Execute : " + reconstructParam.WORKSPACE_DIR + "/TrainBoW/Release/TrainBoW " + os.path.join(output_dir,"Output") + " " + \
              os.path.join(output_dir,"Output", "matches", "BOWfile.yml") + " -p=" + os.path.join(output_dir,"Output", "matches", "PCAfile.yml")
    os.system(reconstructParam.WORKSPACE_DIR + "/TrainBoW/Release/TrainBoW " + os.path.join(output_dir,"Output") + " " + \
              os.path.join(output_dir,"Output", "matches", "BOWfile.yml") + " -p=" + os.path.join(output_dir,"Output", "matches", "PCAfile.yml"))
    
    os.system("openMVG_main_ComputeSfM_DataColor -i " + resultSfMDataFile + \
              " -o " + os.path.join(output_dir,"Output","SfM","reconstruction","global","colorized.ply"))
def main():
    description = 'This script is for testing posenet'
    parser = argparse.ArgumentParser(description=description)
    parser.add_argument('input_txt_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path of input txt file in Cambridge Visual Landmark Dataset format.')
    parser.add_argument('input_beacon_setting_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path where beacon setting file is saved.')
    parser.add_argument('input_pb_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path of model pb file.')
    parser.add_argument('result_log_dir', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Directory path where localization result files are saved.')
    parser.add_argument('-f', '--use_fixed_input_mean_std', action='store_true', default=False, \
                        help='Use fixed input mean and std (default: False)')
    args = parser.parse_args()
    input_txt_file = args.input_txt_file
    input_beacon_setting_file = args.input_beacon_setting_file
    input_pb_file = args.input_pb_file
    result_log_dir = args.result_log_dir
    use_fixed_input_mean_std = args.use_fixed_input_mean_std

    input_model_dir = os.path.dirname(input_pb_file)
    input_numpy_mean_beacon_file = os.path.join(input_model_dir,
                                                "mean_beacon.npy")
    if use_fixed_input_mean_std:
        input_numpy_mean_beacon = None
    else:
        input_numpy_mean_beacon = np.load(input_numpy_mean_beacon_file)
    output_summary_log_file = os.path.join(result_log_dir, "summary-log.txt")
    output_hist_log_file = os.path.join(result_log_dir, "hist-log.txt")

    # parse beacon setting file
    beaconmap = IBeaconUtils.parseBeaconSetting(input_beacon_setting_file)
    beacon_num = len(beaconmap.keys())

    beacons = tf.placeholder(tf.float32, [1, beacon_num, 1, 1])
    datasource = get_data(input_txt_file, beaconmap, input_numpy_mean_beacon,
                          use_fixed_input_mean_std)
    results = np.zeros((len(datasource.beacons), 2))

    # Set GPU options
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4)

    time_array = np.array([])

    # Load model
    graph = load_graph(input_pb_file)
    input_beacon_name = "import/" + input_beacon_layer_name
    output_pos_name = "import/" + output_pos_layer_name
    output_rot_name = "import/" + output_rot_layer_name
    input_operation = graph.get_operation_by_name(input_beacon_name)
    output_pos_operation = graph.get_operation_by_name(output_pos_name)
    output_rot_operation = graph.get_operation_by_name(output_rot_name)

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options),
                    graph=graph) as sess:
        for i in range(len(datasource.beacons)):
            np_beacon = datasource.beacons[i]
            feed = {input_operation.outputs[0]: np_beacon}

            pose_q = np.asarray(datasource.poses[i][3:7])
            pose_x = np.asarray(datasource.poses[i][0:3])
            start_time = time.time()
            predicted_x, predicted_q = sess.run([
                output_pos_operation.outputs[0],
                output_rot_operation.outputs[0]
            ],
                                                feed_dict=feed)
            elapsed_time = time.time() - start_time
            time_array = np.append(time_array, elapsed_time)

            pose_q = np.squeeze(pose_q)
            pose_x = np.squeeze(pose_x)
            predicted_q = np.squeeze(predicted_q)
            predicted_x = np.squeeze(predicted_x)

            # calculate error
            q1 = pose_q / np.linalg.norm(pose_q)
            q2 = predicted_q / np.linalg.norm(predicted_q)
            d = abs(np.sum(np.multiply(q1, q2)))
            # fix floating point inaccuracy
            if d < -1.0:
                d = -1.0
            if d > 1.0:
                d = 1.0
            theta = 2 * np.arccos(d) * 180 / math.pi
            error_x = np.linalg.norm(pose_x - predicted_x)
            results[i, :] = [error_x, theta]
            print 'Index=', i, ' , Pos Error(m)=', error_x, ',  Rot Error(degrees)=', theta

    # write histgram results
    bin_edge = [0.01 * float(x) for x in range(0, 1001)]
    dist_errors = results[:, 0]
    dist_hist, dist_hist_bins = np.histogram(dist_errors, bins=bin_edge)
    dist_hist_cum_ratio = np.cumsum(dist_hist) / float(len(datasource.beacons))
    print "Histogram of error: " + str(dist_hist)
    print "Cumulative ratio of error: " + str(dist_hist_cum_ratio)
    print "Total loc err larger than " + str(
        np.max(bin_edge)) + " meters: " + str(
            len(datasource.beacons) - np.sum(dist_hist))

    # write summary of results
    mean_result = np.mean(results, axis=0)
    std_result = np.std(results, axis=0)
    median_result = np.median(results, axis=0)
    max_result = np.max(results, axis=0)
    percentile_80_result = np.percentile(results, 80, axis=0)
    percentile_90_result = np.percentile(results, 90, axis=0)
    percentile_95_result = np.percentile(results, 95, axis=0)
    print 'Mean error ', mean_result[0], 'm  and ', mean_result[1], 'degrees.'
    print 'StdDev error ', std_result[0], 'm  and ', std_result[1], 'degrees.'
    print 'Median error ', median_result[0], 'm  and ', median_result[
        1], 'degrees.'
    print 'Max error ', max_result[0], 'm  and ', max_result[1], 'degrees.'
    print '80 percentile error ', percentile_80_result[
        0], 'm  and ', percentile_80_result[1], 'degrees.'
    print '90 percentile error ', percentile_90_result[
        0], 'm  and ', percentile_90_result[1], 'degrees.'
    print '95 percentile error ', percentile_95_result[
        0], 'm  and ', percentile_95_result[1], 'degrees.'
    print 'Mean time ', str(np.average(time_array))
    print 'StdDev time ', str(np.std(time_array))
    print 'Median time ', str(np.median(time_array))
    with open(output_summary_log_file, "w") as fw:
        fw.write("Number of test image = " + str(len(datasource.beacons)) +
                 "\n")
        fw.write("Mean error = " + str(mean_result[0]) + " meters." + "\n")
        fw.write("StdDev error = " + str(std_result[0]) + " meters." + "\n")
        fw.write("Median error = " + str(median_result[0]) + " meters." + "\n")
        fw.write("Max error = " + str(max_result[0]) + " meters." + "\n")
        fw.write("80 percentile error = " + str(percentile_80_result[0]) +
                 " meters." + "\n")
        fw.write("90 percentile error = " + str(percentile_90_result[0]) +
                 " meters." + "\n")
        fw.write("95 percentile error = " + str(percentile_95_result[0]) +
                 " meters." + "\n")
        fw.write("\n")
        fw.write("Mean error = " + str(mean_result[1]) + " degrees." + "\n")
        fw.write("StdDev error = " + str(std_result[1]) + " degrees." + "\n")
        fw.write("Median error = " + str(median_result[1]) + " degrees." +
                 "\n")
        fw.write("Max error = " + str(max_result[1]) + " degrees." + "\n")
        fw.write("80 percentile error = " + str(percentile_80_result[1]) +
                 " degrees." + "\n")
        fw.write("90 percentile error = " + str(percentile_90_result[1]) +
                 " degrees." + "\n")
        fw.write("95 percentile error = " + str(percentile_95_result[1]) +
                 " degrees." + "\n")
        fw.write("\n")
        fw.write("Histogram of error: " + str(dist_hist) + "\n")
        fw.write("Cumulative ratio: " + str(
            np.around(
                np.cumsum(dist_hist, dtype=float) /
                len(datasource.beacons), 2)) + "\n")
        fw.write("Total loc err larger than " + str(np.max(bin_edge)) +
                 " meters: " +
                 str(len(datasource.beacons) - np.sum(dist_hist)) + "\n")
        fw.write("\n")
        fw.write("Mean time = " + str(np.average(time_array)) + "\n")
        fw.write("StdDev time = " + str(np.std(time_array)) + "\n")
        fw.write("Median time = " + str(np.median(time_array)) + "\n")
    # write error histgram
    np.savetxt(output_hist_log_file,
               zip(dist_hist_bins, dist_hist_cum_ratio),
               delimiter=',')
    # write error histgram
    np.savetxt(output_hist_log_file,
               zip(dist_hist_bins, dist_hist_cum_ratio),
               delimiter=',')
Esempio n. 7
0
def main():
    description = 'This script is for testing posenet'
    parser = argparse.ArgumentParser(description=description)
    parser.add_argument('input_txt_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path of input txt file in Cambridge Visual Landmark Dataset format.')
    parser.add_argument('input_beacon_setting_file', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='File path where beacon setting file is saved.')
    parser.add_argument('output_model_dir', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Directory path where output models will be saved.')
    parser.add_argument('output_log_dir', action='store', nargs=None, const=None, \
                        default=None, type=str, choices=None, metavar=None, \
                        help='Directory path where log files will be saved.')
    parser.add_argument('-i', '--input_image_weight_file', action='store', type=str, default=None, \
                        help='File path image posenet weiht is stored in numpy format.')
    parser.add_argument('-w', '--input_beacon_weight_file', action='store', type=str, default=None, \
                        help='File path beacon posenet weiht is stored in numpy format.')
    parser.add_argument('-l', '--loss_beta', action='store', type=float, default=posenet_config.loss_beta, \
                        help='Beta for loss function (Default : ' + str(posenet_config.loss_beta))
    parser.add_argument('-s', '--use_shrink_model', action='store_true', default=False, \
                        help='Use shrink model (default: False)')
    parser.add_argument('-f', '--use_fixed_input_mean_std', action='store_true', default=False, \
                        help='Use fixed image mean and std (default: False)')
    parser.add_argument('-a', '--use_augmentation_beacon', action='store_true', default=False, \
                        help='Use data augmentation for beacon data (default: False)')
    parser.add_argument('-m', '--base_model', action='store', type=str, default=posenet_config.base_model, \
                        help='Base model : inception-v1/inception-v3/mobilenet-v1 (Default : ' + str(posenet_config.base_model))
    parser.add_argument('-e', '--epochs', action='store', type=int, default=posenet_config.epochs, \
                        help='Epochs (Default : ' + str(posenet_config.epochs))
    parser.add_argument('-b', '--batch_size', action='store', type=int, default=posenet_config.batch_size, \
                        help='Batch size (Default : ' + str(posenet_config.batch_size))
    args = parser.parse_args()
    input_txt_file = args.input_txt_file
    input_beacon_setting_file = args.input_beacon_setting_file
    output_model_dir = args.output_model_dir
    output_log_dir = args.output_log_dir
    input_image_weight_file = args.input_image_weight_file
    input_beacon_weight_file = args.input_beacon_weight_file
    posenet_config.loss_beta = args.loss_beta
    use_shrink_model = args.use_shrink_model
    use_fixed_input_mean_std = args.use_fixed_input_mean_std
    use_augmentation_beacon = args.use_augmentation_beacon
    posenet_config.base_model = args.base_model
    posenet_config.epochs = args.epochs
    posenet_config.batch_size = args.batch_size
    print "base model : " + str(posenet_config.base_model)
    print "epochs : " + str(posenet_config.epochs)
    print "batch size : " + str(posenet_config.batch_size)
    print "loss weight value beta : " + str(posenet_config.loss_beta)
    print "use shrink model for training : " + str(use_shrink_model)
    print "use fixed input mean and std : " + str(use_fixed_input_mean_std)
    print "use beacon data augmentation : " + str(use_augmentation_beacon)
    if posenet_config.base_model != "inception-v1" and posenet_config.base_model != "inception-v3" and posenet_config.base_model != "mobilenet-v1":
        print "invalid base model : " + posenet_config.base_model
        sys.exit()
    if input_image_weight_file is None or input_beacon_weight_file is None:
        print "please specify initial weight for image and beacon"
        sys.exit()

    # parse beacon setting file
    beaconmap = IBeaconUtils.parseBeaconSetting(input_beacon_setting_file)
    beacon_num = len(beaconmap.keys())

    input_image_dir = os.path.dirname(input_txt_file)
    output_numpy_mean_image_file = os.path.join(output_model_dir,
                                                "mean_image.npy")
    output_numpy_mean_beacon_file = os.path.join(output_model_dir,
                                                 "mean_beacon.npy")
    output_numpy_model_file = os.path.join(output_model_dir, "model.npy")
    output_model_file = os.path.join(output_model_dir, "model.ckpt")

    if posenet_config.base_model == "inception-v1":
        image_size = 224
        output_auxiliary = True
    elif posenet_config.base_model == "inception-v3":
        image_size = 299
        output_auxiliary = False
    elif posenet_config.base_model == "mobilenet-v1":
        image_size = 224
        output_auxiliary = False
    else:
        print "invalid base model : " + posenet_config.base_model
        sys.exit()

    datasource, mean_image, mean_beacon = posenet_data_utils.get_image_beacon_data(
        input_txt_file,
        input_image_dir,
        beaconmap,
        beacon_num,
        use_fixed_input_mean_std,
        use_augmentation_beacon,
        image_size=image_size)
    if use_fixed_input_mean_std:
        print("Skip save mean image and beacon")
    else:
        with open(output_numpy_mean_image_file, 'wb') as fw:
            np.save(fw, mean_image)
        print("Save mean image at: " + output_numpy_mean_image_file)
        with open(output_numpy_mean_beacon_file, 'wb') as fw:
            np.save(fw, mean_beacon)
        print("Save mean beacon at: " + output_numpy_mean_beacon_file)

    # Set GPU options
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
    session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    KTF.set_session(session)

    # Train model
    adam = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=0.00000001)
    if use_shrink_model:
        if posenet_config.base_model == "inception-v1":
            model = posenet_image_beacon_no_inception_shrink_keras.create_posenet_inception_v1(
                beacon_num, input_image_weight_file, input_beacon_weight_file)
            model.compile(optimizer=adam,
                          loss={
                              'image_beacon_cls1_fc_pose_xyz':
                              posenet_loss.euc_loss1x,
                              'image_beacon_cls1_fc_pose_wpqr':
                              posenet_loss.euc_loss1q,
                              'image_beacon_cls2_fc_pose_xyz':
                              posenet_loss.euc_loss2x,
                              'image_beacon_cls2_fc_pose_wpqr':
                              posenet_loss.euc_loss2q,
                              'image_beacon_cls3_fc_pose_xyz':
                              posenet_loss.euc_loss3x,
                              'image_beacon_cls3_fc_pose_wpqr':
                              posenet_loss.euc_loss3q
                          })
        elif posenet_config.base_model == "inception-v3":
            model = posenet_image_beacon_no_inception_shrink_keras.create_posenet_inception_v3(
                beacon_num, input_image_weight_file, input_beacon_weight_file)
            model.compile(optimizer=adam,
                          loss={
                              'image_beacon_cls3_fc_pose_xyz':
                              posenet_loss.euc_loss3x,
                              'image_beacon_cls3_fc_pose_wpqr':
                              posenet_loss.euc_loss3q
                          })
        elif posenet_config.base_model == "mobilenet-v1":
            model = posenet_image_beacon_no_inception_shrink_keras.create_posenet_mobilenet_v1(
                beacon_num, input_image_weight_file, input_beacon_weight_file)
            model.compile(optimizer=adam,
                          loss={
                              'image_beacon_cls_fc_pose_xyz':
                              posenet_loss.euc_loss3x,
                              'image_beacon_cls_fc_pose_wpqr':
                              posenet_loss.euc_loss3q
                          })
        else:
            print "invalid base model : " + posenet_config.base_model
            sys.exit()
    else:
        print "Do not shrink model is not supported"
        sys.exit()
    model.summary()

    # Setup checkpointing
    checkpointer = ModelCheckpoint(filepath=os.path.join(
        output_model_dir, "checkpoint_weights.h5"),
                                   verbose=1,
                                   save_weights_only=True,
                                   period=1)

    # Save Tensorboard log
    logger = TensorBoard(log_dir=output_log_dir,
                         histogram_freq=0,
                         write_graph=True)

    # Adjust Epoch size depending on beacon data augmentation
    if use_augmentation_beacon:
        posenet_config.epochs = posenet_config.epochs / posenet_config.num_beacon_augmentation
    steps_per_epoch = int(
        len(datasource.poses_index) / float(posenet_config.batch_size))
    num_iterations = steps_per_epoch * posenet_config.epochs
    print("Number of epochs : " + str(posenet_config.epochs))
    print("Number of training data : " + str(len(datasource.poses_index)))
    print("Number of iterations : " + str(num_iterations))

    history = model.fit_generator(
        posenet_data_utils.gen_image_beacon_data_batch(
            datasource, output_auxiliary=output_auxiliary),
        steps_per_epoch=steps_per_epoch,
        epochs=posenet_config.epochs,
        callbacks=[checkpointer, logger])

    model.save_weights(os.path.join(output_model_dir, "trained_weights.h5"))