kernel_initializer=initializer), Conv2D(16, 2, activation='elu', padding='valid', input_shape=dummy_env.observation_space.shape, kernel_initializer=initializer), Flatten(), Dropout(0.5), Dense(512, activation='elu', kernel_initializer=initializer) ]) # Exploration and learning rate decay after each epoch eps = 0.2 eps_decay = 0.9 learning_rate = 3e-3 learning_decay = 0.9 explore_policy = EpsGreedy(eps, gym_2048.check_valid) exploit_policy = Greedy(gym_2048.check_valid) # Create Deep Q-Learning Network agent agent = DQN(model, actions=dummy_env.action_space.n, gamma=0.99, batch_size=64, nsteps=50, enable_double_dqn=True, enable_dueling_network=True, target_update=10, test_policy=exploit_policy) def plot_rewards_show(episode_rewards, episode_steps, done=False, title='Rewards'): plt.clf() plt.xlabel('Step') plt.ylabel('Reward') plt.title('DQN rewards') for i, (ed, steps) in enumerate(zip(episode_rewards, episode_steps)): plt.plot(steps, ed, alpha=0.5 if i == 0 else 0.2,
def __init__(self, model, actions, optimizer=None, policy=None, test_policy=None, gamma=0.99, instances=8, nsteps=1, value_loss=0.5, entropy_loss=0.01): """ TODO: Describe parameters """ self.actions = actions self.optimizer = Adam(lr=3e-3) if optimizer is None else optimizer self.memory = memory.OnPolicy(steps=nsteps, instances=instances) if policy is None: # Create one policy per instance, with varying exploration parameters self.policy = [Greedy()] + [ GaussianEpsGreedy(eps, 0.1) for eps in np.arange(0, 1, 1 / (instances - 1)) ] else: self.policy = policy self.test_policy = Greedy() if test_policy is None else test_policy self.gamma = gamma self.instances = instances self.nsteps = nsteps self.value_loss = value_loss self.entropy_loss = entropy_loss self.training = True # Create output model layers based on number of actions raw_output = model.layers[-1].output actor = Dense(actions, activation='softmax')( raw_output) # Actor (Policy Network) critic = Dense(1, activation='linear')( raw_output) # Critic (Value Network) output_layer = Concatenate()([actor, critic]) self.model = Model(inputs=model.input, outputs=output_layer) def a2c_loss(targets_actions, y_pred): # Unpack input targets, actions = targets_actions[:, 0], targets_actions[:, 1:] # Unpack probs, values = y_pred[:, :-1], y_pred[:, -1] # Compute advantages and logprobabilities adv = targets - values logprob = tf.math.log( tf.reduce_sum(probs * actions, axis=1, keepdims=False) + 1e-10) # Compute composite loss loss_policy = -adv * logprob loss_value = self.value_loss * tf.square(adv) entropy = self.entropy_loss * tf.reduce_sum( probs * tf.math.log(probs + 1e-10), axis=1, keepdims=False) return tf.reduce_mean(loss_policy + loss_value + entropy) self.model.compile(optimizer=self.optimizer, loss=a2c_loss)
class A2C(Agent): """Advantage Actor-Critic (A2C) A2C is a synchronous version of A3C which gives equal or better performance. For more information on A2C refer to the OpenAI blog post: https://blog.openai.com/baselines-acktr-a2c/. The A3C algorithm is described in "Asynchronous Methods for Deep Reinforcement Learning" (Mnih et al., 2016) Since this algorithm is on-policy, it can and should be trained with multiple simultaneous environment instances. The parallelism decorrelates the agents' data into a more stationary process which aids learning. """ def __init__(self, model, actions, optimizer=None, policy=None, test_policy=None, gamma=0.99, instances=8, nsteps=1, value_loss=0.5, entropy_loss=0.01): """ TODO: Describe parameters """ self.actions = actions self.optimizer = Adam(lr=3e-3) if optimizer is None else optimizer self.memory = memory.OnPolicy(steps=nsteps, instances=instances) if policy is None: # Create one policy per instance, with varying exploration parameters self.policy = [Greedy()] + [ GaussianEpsGreedy(eps, 0.1) for eps in np.arange(0, 1, 1 / (instances - 1)) ] else: self.policy = policy self.test_policy = Greedy() if test_policy is None else test_policy self.gamma = gamma self.instances = instances self.nsteps = nsteps self.value_loss = value_loss self.entropy_loss = entropy_loss self.training = True # Create output model layers based on number of actions raw_output = model.layers[-1].output actor = Dense(actions, activation='softmax')( raw_output) # Actor (Policy Network) critic = Dense(1, activation='linear')( raw_output) # Critic (Value Network) output_layer = Concatenate()([actor, critic]) self.model = Model(inputs=model.input, outputs=output_layer) def a2c_loss(targets_actions, y_pred): # Unpack input targets, actions = targets_actions[:, 0], targets_actions[:, 1:] # Unpack probs, values = y_pred[:, :-1], y_pred[:, -1] # Compute advantages and logprobabilities adv = targets - values logprob = tf.math.log( tf.reduce_sum(probs * actions, axis=1, keepdims=False) + 1e-10) # Compute composite loss loss_policy = -adv * logprob loss_value = self.value_loss * tf.square(adv) entropy = self.entropy_loss * tf.reduce_sum( probs * tf.math.log(probs + 1e-10), axis=1, keepdims=False) return tf.reduce_mean(loss_policy + loss_value + entropy) self.model.compile(optimizer=self.optimizer, loss=a2c_loss) def save(self, filename, overwrite=False): """Saves the model parameters to the specified file.""" self.model.save_weights(filename, overwrite=overwrite) def act(self, state, instance=0): """Returns the action to be taken given a state.""" qvals = self.model.predict(np.array([state]))[0][:-1] if self.training: return self.policy[instance].act(qvals) if isinstance( self.policy, list) else self.policy.act(qvals) else: return self.test_policy[instance].act(qvals) if isinstance( self.test_policy, list) else self.test_policy.act(qvals) def push(self, transition, instance=0): """Stores the transition in memory.""" self.memory.put(transition, instance) def train(self, step): """Trains the agent for one step.""" if len(self.memory) < self.instances: return state_batch, action_batch, reward_batches, end_state_batch, not_done_mask = self.memory.get( ) # Compute the value of the last next states target_qvals = np.zeros(self.instances) non_final_last_next_states = [ es for es in end_state_batch if es is not None ] if len(non_final_last_next_states) > 0: non_final_mask = list(map(lambda s: s is not None, end_state_batch)) target_qvals[non_final_mask] = self.model.predict_on_batch( np.array(non_final_last_next_states))[:, -1].squeeze() # Compute n-step discounted return # If episode ended within any sampled nstep trace - zero out remaining rewards for n in reversed(range(self.nsteps)): rewards = np.array([b[n] for b in reward_batches]) target_qvals *= np.array([t[n] for t in not_done_mask]) target_qvals = rewards + (self.gamma * target_qvals) # Prepare loss data: target Q-values and actions taken (as a mask) ran = np.arange(self.instances) targets_actions = np.zeros((self.instances, self.actions + 1)) targets_actions[ran, 0] = target_qvals targets_actions[ran, np.array(action_batch) + 1] = 1 self.model.train_on_batch(np.array(state_batch), targets_actions)
# Optimizer with sheduled learning rate decay optimizer = Adam(lr=3e-3, decay=1e-5) # Run multiple instances instances = 8 # Exploration and learning rate decay after each epoch eps_max = 0.2 eps_decay = 0.9 learning_rate = 3e-3 learning_decay = 0.9 # Create Advantage Actor-Critic agent agent = A2C(model, actions=dummy_env.action_space.n, nsteps=20, instances=instances, optimizer=optimizer, test_policy=Greedy(gym_2048.check_valid)) # Run epochs for epoch in range(20): # Create a policy for each instance with a different eps policy = [Greedy(gym_2048.check_valid)] + [ EpsGreedy(eps, gym_2048.check_valid) for eps in np.arange(0, eps_max, eps_max / (instances - 1)) ] # Update agent agent.policy = policy agent.model.optimizer.lr = learning_rate # Run epoch print(f'Epoch {epoch}') run_epoch(create_env, agent,
def __init__(self, model, actions, optimizer=None, policy=None, test_policy=None, memsize=100000, target_update=10, gamma=0.99, batch_size=32, nsteps=0, enable_double_dqn=False, enable_dueling_network=False, dueling_type='avg'): """ TODO: Describe parameters """ self.actions = actions self.optimizer = Adam(lr=3e-3) if optimizer is None else optimizer self.policy = EpsGreedy(0.1) if policy is None else policy self.test_policy = Greedy() if test_policy is None else test_policy self.memsize = memsize self.memory = PrioritizedExperienceReplay(memsize, nsteps) self.target_update = target_update self.gamma = gamma self.batch_size = batch_size self.nsteps = nsteps self.training = True # Extension options self.enable_double_dqn = enable_double_dqn self.enable_dueling_network = enable_dueling_network self.dueling_type = dueling_type # Create output layer based on number of actions and (optionally) a dueling architecture raw_output = model.layers[-1].output if self.enable_dueling_network: # "Dueling Network Architectures for Deep Reinforcement Learning" (Wang et al., 2016) # Output the state value (V) and the action-specific advantages (A) separately then # compute the Q values: Q = A + V dueling_layer = Dense(self.actions + 1, activation='linear')(raw_output) if self.dueling_type == 'avg': f = lambda a: tf.expand_dims(a[:,0], -1) + a[:,1:] - \ tf.reduce_mean(a[:,1:], axis=1, keepdims=True) elif self.dueling_type == 'max': f = lambda a: tf.expand_dims(a[:,0], -1) + a[:,1:] - \ tf.reduce_max(a[:,1:], axis=1, keepdims=True) elif self.dueling_type == 'naive': f = lambda a: tf.expand_dims(a[:, 0], -1) + a[:, 1:] else: raise HkException( "dueling_type must be one of {'avg','max','naive'}") output_layer = Lambda(f, output_shape=(self.actions, ))(dueling_layer) else: output_layer = Dense(self.actions, activation='linear')(raw_output) self.model = Model(inputs=model.input, outputs=output_layer) # Define loss function that computes the MSE between target Q-values and cumulative discounted rewards # If using PrioritizedExperienceReplay, the loss function also computes the TD error # and updates the trace priorities def masked_q_loss(data, y_pred): """Computes the MSE between the Q-values of the actions that were taken and the cumulative discounted rewards obtained after taking those actions. Updates trace priorities if using PrioritizedExperienceReplay. """ action_batch, target_qvals = data[:, 0], data[:, 1] seq = tf.cast(tf.range(0, tf.shape(action_batch)[0]), tf.int32) action_idxs = tf.transpose( tf.stack([seq, tf.cast(action_batch, tf.int32)])) qvals = tf.gather_nd(y_pred, action_idxs) if isinstance(self.memory, PrioritizedExperienceReplay): def update_priorities(_qvals, _target_qvals, _traces_idxs): """Computes the TD error and updates memory priorities.""" td_error = np.abs((_target_qvals - _qvals).numpy()) _traces_idxs = (tf.cast(_traces_idxs, tf.int32)).numpy() self.memory.update_priorities(_traces_idxs, td_error) return _qvals qvals = tf.py_function(func=update_priorities, inp=[qvals, target_qvals, data[:, 2]], Tout=tf.float32) return tf.keras.losses.mse(qvals, target_qvals) self.model.compile(optimizer=self.optimizer, loss=masked_q_loss) # Clone model to use for delayed Q targets self.target_model = tf.keras.models.clone_model(self.model) self.target_model.set_weights(self.model.get_weights())
class DQN(Agent): """Deep Q-Learning Network Base implementation: "Playing Atari with Deep Reinforcement Learning" (Mnih et al., 2013) Extensions: Multi-step returns: "Reinforcement Learning: An Introduction" 2nd ed. (Sutton & Barto, 2018) Double Q-Learning: "Deep Reinforcement Learning with Double Q-learning" (van Hasselt et al., 2015) Dueling Q-Network: "Dueling Network Architectures for Deep Reinforcement Learning" (Wang et al., 2016) """ def __init__(self, model, actions, optimizer=None, policy=None, test_policy=None, memsize=100000, target_update=10, gamma=0.99, batch_size=32, nsteps=0, enable_double_dqn=False, enable_dueling_network=False, dueling_type='avg'): """ TODO: Describe parameters """ self.actions = actions self.optimizer = Adam(lr=3e-3) if optimizer is None else optimizer self.policy = EpsGreedy(0.1) if policy is None else policy self.test_policy = Greedy() if test_policy is None else test_policy self.memsize = memsize self.memory = PrioritizedExperienceReplay(memsize, nsteps) self.target_update = target_update self.gamma = gamma self.batch_size = batch_size self.nsteps = nsteps self.training = True # Extension options self.enable_double_dqn = enable_double_dqn self.enable_dueling_network = enable_dueling_network self.dueling_type = dueling_type # Create output layer based on number of actions and (optionally) a dueling architecture raw_output = model.layers[-1].output if self.enable_dueling_network: # "Dueling Network Architectures for Deep Reinforcement Learning" (Wang et al., 2016) # Output the state value (V) and the action-specific advantages (A) separately then # compute the Q values: Q = A + V dueling_layer = Dense(self.actions + 1, activation='linear')(raw_output) if self.dueling_type == 'avg': f = lambda a: tf.expand_dims(a[:,0], -1) + a[:,1:] - \ tf.reduce_mean(a[:,1:], axis=1, keepdims=True) elif self.dueling_type == 'max': f = lambda a: tf.expand_dims(a[:,0], -1) + a[:,1:] - \ tf.reduce_max(a[:,1:], axis=1, keepdims=True) elif self.dueling_type == 'naive': f = lambda a: tf.expand_dims(a[:, 0], -1) + a[:, 1:] else: raise HkException( "dueling_type must be one of {'avg','max','naive'}") output_layer = Lambda(f, output_shape=(self.actions, ))(dueling_layer) else: output_layer = Dense(self.actions, activation='linear')(raw_output) self.model = Model(inputs=model.input, outputs=output_layer) # Define loss function that computes the MSE between target Q-values and cumulative discounted rewards # If using PrioritizedExperienceReplay, the loss function also computes the TD error # and updates the trace priorities def masked_q_loss(data, y_pred): """Computes the MSE between the Q-values of the actions that were taken and the cumulative discounted rewards obtained after taking those actions. Updates trace priorities if using PrioritizedExperienceReplay. """ action_batch, target_qvals = data[:, 0], data[:, 1] seq = tf.cast(tf.range(0, tf.shape(action_batch)[0]), tf.int32) action_idxs = tf.transpose( tf.stack([seq, tf.cast(action_batch, tf.int32)])) qvals = tf.gather_nd(y_pred, action_idxs) if isinstance(self.memory, PrioritizedExperienceReplay): def update_priorities(_qvals, _target_qvals, _traces_idxs): """Computes the TD error and updates memory priorities.""" td_error = np.abs((_target_qvals - _qvals).numpy()) _traces_idxs = (tf.cast(_traces_idxs, tf.int32)).numpy() self.memory.update_priorities(_traces_idxs, td_error) return _qvals qvals = tf.py_function(func=update_priorities, inp=[qvals, target_qvals, data[:, 2]], Tout=tf.float32) return tf.keras.losses.mse(qvals, target_qvals) self.model.compile(optimizer=self.optimizer, loss=masked_q_loss) # Clone model to use for delayed Q targets self.target_model = tf.keras.models.clone_model(self.model) self.target_model.set_weights(self.model.get_weights()) def save(self, filename, overwrite=False): """Saves the model parameters to the specified file.""" self.model.save_weights(filename, overwrite=overwrite) def act(self, state, instance=0): """Returns the action to be taken given a state.""" qvals = self.model.predict(np.array([state]))[0] return self.policy.act( qvals) if self.training else self.test_policy.act(qvals) def push(self, transition, instance=0): """Stores the transition in memory.""" self.memory.put(transition) def train(self, step): """Trains the agent for one step.""" if len(self.memory) == 0: return # Update target network if self.target_update >= 1 and step % self.target_update == 0: # Perform a hard update self.target_model.set_weights(self.model.get_weights()) elif self.target_update < 1: # Perform a soft update mw = np.array(self.model.get_weights()) tmw = np.array(self.target_model.get_weights()) self.target_model.set_weights(self.target_update * mw + (1 - self.target_update) * tmw) # Train even when memory has fewer than the specified batch_size batch_size = min(len(self.memory), self.batch_size) # Sample batch_size traces from memory state_batch, action_batch, reward_batches, end_state_batch, not_done_mask = self.memory.get( batch_size) # Compute the value of the last next states target_qvals = np.zeros(batch_size) non_final_last_next_states = [ es for es in end_state_batch if es is not None ] if len(non_final_last_next_states) > 0: if self.enable_double_dqn: # "Deep Reinforcement Learning with Double Q-learning" (van Hasselt et al., 2015) # The online network predicts the actions while the target network is used to estimate the Q-values q_values = self.model.predict_on_batch( np.array(non_final_last_next_states)) actions = np.argmax(q_values, axis=1) # Estimate Q-values using the target network but select the values with the # highest Q-value wrt to the online model (as computed above). target_q_values = self.target_model.predict_on_batch( np.array(non_final_last_next_states)) selected_target_q_vals = target_q_values[ range(len(target_q_values)), actions] else: # Use delayed target network to compute target Q-values selected_target_q_vals = self.target_model.predict_on_batch( np.array(non_final_last_next_states)).max(1) non_final_mask = list(map(lambda s: s is not None, end_state_batch)) target_qvals[non_final_mask] = selected_target_q_vals # Compute n-step discounted return # If episode ended within any sampled nstep trace - zero out remaining rewards for n in reversed(range(self.nsteps)): rewards = np.array([b[n] for b in reward_batches]) target_qvals *= np.array([t[n] for t in not_done_mask]) target_qvals = rewards + (self.gamma * target_qvals) # Compile information needed by the custom loss function loss_data = [action_batch, target_qvals] # If using PrioritizedExperienceReplay then we need to provide the trace indexes # to the loss function as well so we can update the priorities of the traces if isinstance(self.memory, PrioritizedExperienceReplay): loss_data.append(self.memory.last_traces_idxs()) # Train model self.model.train_on_batch(np.array(state_batch), np.stack(loss_data).transpose())