Esempio n. 1
0
def peak_index(curve):
    """Find index to the peak of the provided curve."""
    curve = curve.reshape((1, curve.size))
    pot_peak_indices, _ = Hvsr.find_peaks(curve)
    pot_peak_indices = pot_peak_indices[0]
    pot_peak_amp = curve[0, pot_peak_indices]
    pot_peak_index = np.argwhere(pot_peak_amp == np.max(pot_peak_amp))[0][0]
    return pot_peak_indices[pot_peak_index]
Esempio n. 2
0
    def mc_peak_frq(self, distribution='log-normal'):
        """Frequency of the peak of the mean H/V curve.

        Parameters
        ----------
        distribution : {'normal', 'log-normal'}, optional
            Refer to :meth:`mean_curve <Hvsr.mean_curve>` for details.

        Returns
        -------
        float
            Frequency associated with the peak of the mean H/V curve.

        """
        mc = self.mean_curve(distribution)
        return float(self.frq[np.where(mc == np.max(mc[Hvsr.find_peaks(mc)[0]]))])
Esempio n. 3
0
    def mc_peak_amp(self, distribution='log-normal'):
        """Amplitude of the peak of the mean H/V curve.

        Parameters
        ----------
        distribution : {'normal', 'log-normal'}, optional
            Refer to :meth:`mean_curve <Hvsr.mean_curve>` for details.

        Returns
        -------
        float
            Amplitude associated with the peak of the mean H/V curve.

        """
        mc = self.mean_curve(distribution)
        return np.max(mc[Hvsr.find_peaks(mc)[0]])
Esempio n. 4
0
    def mc_peak_frq(self, distribution='lognormal'):
        """Frequency of the peak of the mean HVSR curve.

        Parameters
        ----------
        distribution : {'normal', 'lognormal'}, optional
            Refer to :meth:`mean_curve <Hvsr.mean_curve>` for details.

        Returns
        -------
        float
            Frequency associated with the peak of the mean HVSR curve.

        """
        mc = self.mean_curve(distribution)
        mc = mc.reshape((1, mc.size))
        i_low, i_high = self.hvsrs[0].i_low, self.hvsrs[0].i_high
        return self.frq[i_low + int(np.where(mc[0, i_low:i_high] == np.max(mc[0, Hvsr.find_peaks(mc[:, i_low:i_high], starting_index=i_low)[0]]))[0])]
Esempio n. 5
0
    def mc_peak_amp(self, distribution='lognormal'):
        """Amplitude of the peak of the mean HVSR curve.

        Parameters
        ----------
        distribution : {'normal', 'lognormal'}, optional
            Refer to :meth:`mean_curve <Hvsr.mean_curve>` for details.

        Returns
        -------
        float
            Amplitude associated with the peak of the mean HVSR curve.

        """
        mc = self.mean_curve(distribution)
        mc = mc.reshape((1, mc.size))
        i_low, i_high = self.hvsrs[0].i_low, self.hvsrs[0].i_high
        return np.max(mc[0, Hvsr.find_peaks(mc[:, i_low:i_high], starting_index=i_low)[0]])
Esempio n. 6
0
def peak_index(curve):
    """Find index to the peak of the provided curve."""
    pot_peak_indices, _ = Hvsr.find_peaks(curve)
    pot_peak_amp = curve[pot_peak_indices]
    pot_peak_index = np.argwhere(pot_peak_amp == np.max(pot_peak_amp))[0][0]
    return pot_peak_indices[pot_peak_index]